HMM前向算法复杂度的分析

使用隐马尔科夫模型(HMM)解决如下问题:已知一个观测序列,求生成该观测序列的概率。

方法参见:
http://luyifanlife.blog.163.com/blog/static/20024105720126272311612/

两种方法复杂度的比较,其中N表示隐含状态的个数,T表示观测序列的长度:
(1)穷举搜索

[(2(T1)+1)+(T1)]NT

(2)前向算法 Forward Algorithm

[(N+1)+(N1)]NT

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页