- 博客(123)
- 收藏
- 关注
原创 优化器Optimier
SGD为最基础的,Momentum和AdaGrad对其进行了优化,RMSProp结合了前两者的特征,而Adam是完全结合了Momentum和AdaGrad本质是learning rate 的改变
2021-07-02 17:43:30
220
原创 结果可视化plot_result
import matplotlib.pyplot as pltimport tensorflow.compat.v1 as tfcimport tensorflow as tfimport numpy as np# tensorflow 2.5.0# 添加层函数def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random.normal([in_siz
2021-07-02 17:17:00
1329
原创 搭建神经网络
import tensorflow.compat.v1 as tfcimport tensorflow as tfimport numpy as np# tensorflow 2.5.0def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random.normal([in_size, out_size])) biases = tf.Variable(
2021-07-02 11:53:09
115
原创 定义一个添加层函数
import tensorflow.compat.v1 as tfcimport tensorflow as tf# 定义一个添加神经层的函数# None说明激励函数是线性的def add_layer(inputs, in_size, out_size, activation_function=None): # 随机变量的一个矩阵 Weights = tf.Variable(tf.random.normal([in_size, out_size])) # 加0.1是因为在神
2021-07-02 11:11:32
109
原创 placeholder传入值
placeholder是Tensorflow中的占位符,暂时储存变量如果想要从外部传入data,就需要tf.placeholder(),然后用sess.run(paraA, feed_dict={})的形式传递数据import tensorflow.compat.v1 as tfimport tensorflowinput1 = tf.placeholder(tf.float32) # typeinput2 = tf.placeholder(tf.float32)output = tens
2021-07-02 10:50:54
417
原创 Variable变量
在 Tensorflow 中,定义了某字符串是变量,它才是变量,这一点是与 Python 所不同的。定义语法:state = tf.Variable(0, name=‘counter’),0是初始值在sess中激活变量sess起到类似指针的作用import tensorflow as tf# tensorflow 2.5.0state = tf.Variable(0, name='counter') # 变量# print(state.name)one = tf.constant(1)
2021-07-02 10:40:18
129
原创 Session会话控制
import tensorflow as tf# tensorflow 2.5.0# two methods for opening Sessionmatrix1 = tf.constant([[3, 3]])matrix2 = tf.constant([[2], [2]])product = tf.matmul(matrix1, matrix2) # matrix multiply np.dot(m1, m2)# method 1# sess
2021-07-02 10:28:13
92
原创 拟合例子1
import tensorflow as tfimport numpy as np# tensorflow 2.5.0# creat datax_data = np.random.rand(100).astype(np.float32)y_data = x_data*0.1 + 0.3### create tensorflow structure start ###Weights = tf.Variable(tf.random.uniform([1], -1.0, 1.0))biases
2021-07-02 09:59:45
104
原创 十三、Web自动化测试
13.1自动化入门13.1.1什么是自动化以及优点13.1.2什么是自动化测试1.为什么进行自动化测试2.自动化测试相关知识(重要)3.自动化测试分类13.1.3课程安排13.1.4Web是自动化13.1.5selenium1.什么是selenium2.selenium特点3.seleniumIDE安装与运行3.1.seleniumIDE是什么3.2.为什么学习seleniumIDE(重要)...
2021-07-01 18:07:20
88
原创 九、软件测试模型、分类、用例方法
9.1软件开发模型9.1.1瀑布模型笔记9.1.2快速原型模型(了解)笔记9.1.3螺旋模型(了解)9.2软件测试模型9.2.1软件测试&软件工程9.2.2测试模型9.2.2.1V模型(背会)笔记(重要)笔记(重要)9.2.2.1W模型(背会)笔记(重要)...
2021-06-19 22:00:56
402
2
原创 六、Linux介绍、命令
6.1操作系统6.1.1操作系统的作用6.1.2不同应用领域主流操作系统6.1.3虚拟机6.2操作系统发展史unix>minix>Linix6.3Linux内核及发行版6.4CentOS6.4.1CentOS桌面6.5文件和目录6.5.1Linux下的文件系统6.6常见Linux命令的基本使用...
2021-03-22 17:34:27
87
原创 五、软件测试
5.1软件测试行业基本介绍5.2软件测试基本介绍(背会)5.3测试对象介绍5.4测试级别(背会)5.5系统测试分类(背会)5.6常见的系统测试方法(背会)5.7软件质量(背会)5.8软件测试流程(背会)5.9软件架构5.10浏览器基本介绍5.11常见的图片类型...
2021-03-10 21:03:10
97
原创 2.综合练习
实现<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>综合练习</title> <style type="text/css"> body{ /* 设置文字在当前元素中水平的对齐方式 也可以对行内元素和图片*/ text-align: center; } .two{ color: b
2021-03-09 16:18:10
168
原创 四、H5和C3
4.1H5音频标签<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>H5新增的音频标签</title> </head> <body> <!-- HTML5新的语言标准 ,audio双标签, autoplay可设置自动播放(现在的浏览器都不支持) controls设置显示进度条,loop设置循环播放-->
2021-03-09 15:27:45
152
原创 1.表单作业
1.作业要求2.相关代码<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>表单作业</title> </head> <body> <form action="" method="get"> 邮箱地址:<input type="text" placeholder="请输入邮箱地址">@
2021-03-05 11:18:36
322
原创 三、CSS
3.1CSS基本介绍3.2CSS基本使用<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title></title> <!-- style标签是HTML当中准备好的专门用来存放CSS代码块的 --> <style type="text/css"> /* 用来书写CSS代码 */ </style> <
2021-03-05 11:13:57
207
原创 二、HTML
2.1Web基本介绍2.2HTML基本介绍2.3HTML网页骨架<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title></title> </head> <body> </body></html>2.4HTML语法和标签基本介绍<!DOCTYPE html><html
2021-02-27 17:16:28
272
原创 一、计算机基础
主要内容1.1软件的定义1.2软件缺陷1.3软件测试1.4硬件系统1.5软件系统1.6计算机组成总结1.7二进制基本介绍1.8常见的数学进制1.9进制转换1.10编码1.11数据计量单位1.11编程语言1.11常见的DOS命令...
2021-02-24 10:51:13
102
原创 测试介绍以及课程体系
软件测试介绍1.功能测试不可或缺2.性能测试不可或缺3.整个软件生命周期不可或缺:需求 设计 编写4.中外IT企业对比软件测试课程体系总览模块1模块2模块3模块4
2021-02-21 11:44:06
467
转载 第四周一步步搭建神经网络以及应用(编程作业)
资料本文所使用的资料已上传到百度网盘点击下载,提取码:xx1w,请在开始之前下载好所需资料开始之前简单的讲一下难点,本文会提到**[LINEAR-> ACTIVATION]转发函数,比如我有一个多层的神经网络,结构是输入层->隐藏层->隐藏层->···->隐藏层->输出层**,在每一层中,我会首先计算Z = np.dot(W,A) + b,这叫做【linear_forward】,然后再计算A = relu(Z) 或者 A = sigmoid(Z),这叫做【linea
2021-01-02 20:19:14
322
转载 第四周深度神经网络关键概念测验
1.在实现前向传播和反向传播中使用的“cache”是什么?【 】用于在训练期间缓存成本函数的中间值。【★】 我们用它传递前向传播中计算的变量到相应的反向传播步骤,它包含用于计算导数的反向传播的有用值。【 】它用于跟踪我们正在搜索的超参数,以加速计算。【 】 我们使用它将向后传播计算的变量传递给相应的正向传播步骤,它包含用于计算计算激活的正向传播的有用值。the “cache” records values from the forward propagation units and sends
2021-01-02 10:59:40
671
原创 第四周深层神经网络
4.1深层神经网络什么是深度学习网络?逻辑回归(单层神经网络)和单隐层神经网络,双隐层神经网络和5隐层神经网络预先判断需要多深的神经网络用来描述深度神经网络的符号这是一个四层的神经网络。用L表示神经网路的层数,这里L=4,n[l]表示节点的数量,或小l层的单元数量,a[l]表示l层中的激活函数,w[l]表示权重,在a[l]中计算w[l]的权重。4.2深层神经网络中的前向传播单的训练样本z[l]=w[l]a[l-1]+b[l]a[l]=g[l] (z[l])向量化m个样本(for
2020-12-31 17:37:56
309
原创 3.浅层神经网络
3.1神经网络概述1.什么是神经网络神经节点就类似逻辑回归中求z和a的过程上标方括号[ i ]表示第i层,用来区分单个训练样本的圆括号(i)表示第i个训练样本多层的神经网络就需反复计算z和a,最后计算损失函数在逻辑回归中我们用反向传播计算dz da dw db,同样,在神经网络中我们也有类似的反向计算,dz[2],da[2]…。3.2神经网络的表示我们来看只有一个隐藏层的神经网络(双层神经网络:不算输入层),命名它的各个部分。输入特征x1,x2,x3竖向堆叠,(输入层)四个圆圈
2020-12-24 21:13:31
576
转载 第二周测验-具有神经网络思维的Logistic回归-编程作业
本文所使用的资料已上传到百度网盘【点击下载】,提取码:2u3w ,请在开始之前下载好所需资料,然后将文件解压到你的代码文件同一级目录下,请确保你的代码那里有lr_utils.py和datasets文件夹。我自己整合了跑了一下,更详细点击import numpy as npimport matplotlib.pyplot as pltimport h5pyfrom lr_utils import load_datasettrain_set_x_orig, train_set_y, test_se
2020-12-22 11:26:57
178
转载 第2周测验 - 神经网络基础
第2周测验 - 神经网络基础1.神经元节点计算什么?【 】神经元节点先计算激活函数,再计算线性函数(z = Wx + b)【★】神经元节点先计算线性函数(z = Wx + b),再计算激活。【 】神经元节点计算函数g,函数g计算(Wx + b)。【 】在 将输出应用于激活函数之前,神经元节点计算所有特征的平均值请注意:神经元的输出是a = g(Wx + b),其中g是激活函数(sigmoid,tanh,ReLU,…)。2.下面哪一个是Logistic损失?点击这里更详细题目请注意:我们使用
2020-12-18 10:37:32
551
原创 2.8python中的广播以及numpy
例子1:不同食物中碳水、蛋白质、脂肪的卡路里计算百分比import numpy as npA = np.array([56.0,0.0,4.4,68.0] , [1.2,104.0,52.0,8.0], [1.8,135.0,99.0,0.9])print(A)cal = A.sum(axis=0)#axis=0表示竖直求和print(cal)persentage = 100*A/cal.reshape(1,4)print(perse.
2020-12-17 17:34:03
185
原创 2.7向量化逻辑回归以及逻辑回归梯度输出
回顾逻辑回归的正向传播步骤对单个样本进行预测,你需要做m次。(用for循环)实现向量化(正向传播一步迭代)定义矩阵X(nx,m)(包含所有的训练样本)构建Z(1,m)的行向量,一步执行用来存放单个样本的zpython实现Z = np.dot(w.T,X) + b其中,b是一个实数,在python里运行计算会自动把b变成(1,m)的行向量,即广播思考A如何计算(课后题)...
2020-12-17 10:24:49
148
原创 2.6向量化以及例子
什么是向量化在逻辑回归中(python)显然,向量化快速,方便。小例子(python):向量化和非向量化运行时间的区别import numpy as npn = np.arrary([1,2,3,4])print(a)import numpy as npimport timea = np.random.rand(1000000)b = np.random.rand(1000000)#百万维数组tic = time.time() #记录当前时间c = np.dot(a,b)to.
2020-12-16 22:07:02
746
转载 深度学习简介(第一周课后作业)
第一周测验 - 深度学习简介和“AI是新电力”相类似的说法是什么?【 】AI为我们的家庭和办公室的个人设备供电,类似于电力。【 】通过“智能电网”,AI提供新的电能。【 】AI在计算机上运行,并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能。【★】就像100年前产生电能一样,AI正在改变很多的行业。请注意: 吴恩达在视频中表达了同样的观点。哪些是深度学习快速发展的原因? (两个选项)【★】 现在我们有了更好更快的计算能力。【 】神经网络是一个全新的领域。【★】 我们现
2020-12-16 20:06:07
244
1
原创 2.4梯度下降法
2.4梯度下降法成本函数J衡量了参数w和b在训练集上的效果 。要做的是找到参数w和b使得J最小:用初始值初始化w和b梯度下降,从初始点朝最陡下降方向走,最后收敛到全局最优点梯度下降法的细节:忽略b的一维曲线,重复更新w,alpfa表示学习率,dw表示导数变量名(写代码时)...
2020-12-16 17:42:14
111
原创 2.3逻辑回归损失函数
2.3逻辑回归损失函数上标i表示第i个训练样本。损失函数可以用来衡量算法的运行情况不用误差的平方表示损失L(y的预测值和y的接近程度),因为梯度下降可能找不到全局最优解(函数非凸)。定义一个新的损失函数L(衡量单个训练样本)代价函数J(衡量全体训练样本)...
2020-12-16 16:51:57
263
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅