3.浅层神经网络

这篇博客介绍了神经网络的基础知识,包括神经网络的构成、单个样本的计算、多个样本的向量化处理以及反向传播的理解。重点讨论了非线性激活函数的作用,如sigmoid、ReLU及其导数,并解释了为何需要非线性激活函数。此外,还探讨了神经网络的梯度下降法和随机初始化的重要性。
摘要由CSDN通过智能技术生成

3.1神经网络概述

什么是神经网络
在这里插入图片描述

  • 神经节点就类似逻辑回归中求z和a的过程
  • 上标方括号[ i ]表示第i层,用来区分单个训练样本的圆括号(i)表示第i个训练样本
  • 多层的神经网络就需反复计算z和a,最后计算损失函数
  • 在逻辑回归中我们用反向传播计算dz da dw db,同样,在神经网络中我们也有类似的反向计算,dz[2],da[2]…。

3.2神经网络的表示

在这里插入图片描述

  • 我们来看只有一个隐藏层的神经网络(双层神经网络:不算输入层),命名它的各个部分。
    输入特征x1,x2,x3竖向堆叠,(输入层)
    四个圆圈(隐藏层)
    最后一个圆圈(输出层)

  • 在一个神经网络中,当你使用监督学习训练它时,训练集包含了输入x还有目标输出y。隐藏层的含义是,在训练集中,这些中间节点的真正数值,我们是不知道的,在训练集你看不到它们的数值,能看到的是输入值和输出值。

  • 以前我们用向量x表示输入特征,还有另一种表达方式a[0],这个a也表示激活的意思,它意味着网络中不同层的值会传递给后面的层。输入层将x的值传递给隐藏层,我们将输入层的激活值称为a[0]。隐藏层产生激活值a[1],四个隐藏层单元的值如图。输出层,产生一个实数a[2]。这些和逻辑回归类似,在逻辑回归中y^等于a(只有一个输出层)。

3.3计算单个样本神经网络的输出

在这里插入图片描述

  • 左边逻辑回归:这里的圆圈代表了回归计算的两个步骤
  • 右边神经网络:计算上述步骤很多次。看隐藏层的第一个节点,隐去其他节点。节点的左边看做计算z,右边看做计算a,上标代表哪层,下标是代表本层第几个节点。以此类推第2,3,4个节点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值