3.1神经网络概述
什么是神经网络
- 神经节点就类似逻辑回归中求z和a的过程
- 上标方括号[ i ]表示第i层,用来区分单个训练样本的圆括号(i)表示第i个训练样本
- 多层的神经网络就需反复计算z和a,最后计算损失函数
- 在逻辑回归中我们用反向传播计算dz da dw db,同样,在神经网络中我们也有类似的反向计算,dz[2],da[2]…。
3.2神经网络的表示
-
我们来看只有一个隐藏层的神经网络(双层神经网络:不算输入层),命名它的各个部分。
输入特征x1,x2,x3竖向堆叠,(输入层)
四个圆圈(隐藏层)
最后一个圆圈(输出层) -
在一个神经网络中,当你使用监督学习训练它时,训练集包含了输入x还有目标输出y。隐藏层的含义是,在训练集中,这些中间节点的真正数值,我们是不知道的,在训练集你看不到它们的数值,能看到的是输入值和输出值。
-
以前我们用向量x表示输入特征,还有另一种表达方式a[0],这个a也表示激活的意思,它意味着网络中不同层的值会传递给后面的层。输入层将x的值传递给隐藏层,我们将输入层的激活值称为a[0]。隐藏层产生激活值a[1],四个隐藏层单元的值如图。输出层,产生一个实数a[2]。这些和逻辑回归类似,在逻辑回归中y^等于a(只有一个输出层)。
3.3计算单个样本神经网络的输出
- 左边逻辑回归:这里的圆圈代表了回归计算的两个步骤
- 右边神经网络:计算上述步骤很多次。看隐藏层的第一个节点,隐去其他节点。节点的左边看做计算z,右边看做计算a,上标代表哪层,下标是代表本层第几个节点。以此类推第2,3,4个节点。