去年参加了这个比赛刚开始的时候,遇到了许多坑,还有许多要学习的地方,我现在把这些经验分享出来,给大家一起讨论,第一次参加的时候拿了国二,然后第二次参加了全球校园算法精英大赛拿了国一,现在和大家一起分享一下经验,如果需要完整代码私聊博主
-
用ROS无人车参加学科竞赛的常见“坑”与解决方案
在ROS无人车竞赛中,参赛团队往往会遇到硬件、软件、算法、调试等全方位的挑战。这些问题不仅考验技术能力,更考验团队协作和快速解决问题的能力。以下从实际竞赛场景出发,总结高频“坑点”和实战解决方案,帮助团队少走弯路。
软件篇:ROS的“隐藏陷阱”
多节点通信卡顿
坑点:
激光雷达点云话题(/scan)堵塞,导致规划器收不到实时数据。
多车协同通信时,话题命名冲突引发数据混乱。
解法:
流量控制:用`topic_tools/throttle`限制点云发布频率(如10Hz)。
命名空间隔离:为每辆车分配独立命名空间(如`/robot1/scan`)。
<launch>
<!-- 机器人1 -->
<group ns="robot1">
<param name="robot_name" value="robot1"/>
<!-- 激光雷达 -->
<node name="laser_node" pkg="your_laser_pkg" type="laser_publisher"/>
<!-- 流量控制 -->
<node name="throttle_node" pkg="topic_tools" type="throttle"
args="messages /robot1/scan 10.0 /robot1/scan_throttled"/>
<!-- 规划器订阅限流后的点云 -->
<node name="planner" pkg="your_planner_pkg" type="planner_node">
<remap from="/scan" to="/robot1/scan_throttled"/>
</node>
</group>
<!-- 机器人2(同理) -->
<group ns="robot2">
<param name="robot_name" value="robot2"/>
<!-- 同机器人1配置 -->
</group>
</launch>
参数调试的“蝴蝶效应”
- 坑点:
- 修改一个PID参数导致整车失控,且无法快速回退。
- 解法:
- 动态参数配置:用`dynamic_reconfigure`实时调整参数并保存到文件。
- 版本化管理:用Git分支管理不同场景的参数组合(如`high_speed_config`)。
给出实例
# config/pid_params.cfg
from dynamic_reconfigure.parameter_generator_catkin import *
gen = ParameterGenerator()
gen.add("kp", double_t, 0, "Proportional Gain", 1.0, 0.0, 10.0) # kp: 0.0 <= x <= 10.0
gen.add("ki", double_t, 0, "Integral Gain", 0.1, 0.0, 5.0)
gen.add("kd", double_t, 0, "Derivative Gain", 0.05, 0.0, 2.0)
gen.add("enable", bool_t, 0, "Enable PID", True)
exit(gen.generate(
"your_package", # 功能包名(命名空间)
"pid_node", # 节点名称
"PID_Params" # 生成的配置头文件前缀
))
import dynamic_reconfigure.client
from dynamic_reconfigure.server import Server
from your_package.cfg import PID_ParamsConfig
import rospy
class PIDController:
def __init__(self):
self.server = Server(PID_ParamsConfig, self.config_callback)
self.kp = 1.0
self.ki = 0.1
self.kd = 0.05
self.enabled = True
def config_callback(self, config, level):
self.kp = config.kp
self.ki = config.ki
self.kd = config.kd
self.enabled = config.enable
rospy.loginfo("PID Params updated: kp=%.2f, ki=%.2f, kd=%.2f", self.kp, self.ki, self.kd)
return config
if __name__ == "__main__":
rospy.init_node("pid_node")
controller = PIDController()
rospy.spin()
算法篇:理想模型 vs 现实场景
1. SLAM建图的“幽灵墙”
坑点:
动态行人被误建入地图,长廊环境因特征点不足导致SLAM失效。
解法:
语义过滤:用YOLOv8实时检测行人,从点云中剔除动态物体。
多传感器融合:在走廊中优先使用轮速计+IMU的航迹推算(Dead Reckoning)。
给出例子供参考
步骤1:YOLOv8检测行人并输出边界框
import cv2
import torch
from ultralytics import YOLO
# 加载YOLOv8模型
model = YOLO("yolov8n.pt") # 或更高版本
def detect_person(image):
results = model(image)
boxes = results[0].boxes.xyxy.cpu().numpy()
person_boxes = []
for box in boxes:
class_id = results[0].boxes.cls[int(box[-1])].item()
if class_id == 0: # 假设0是行人类别
person_boxes.append(box)
return person_boxes
步骤2:将检测结果映射到点云中剔除动态点
import numpy as np
import rospy
from sensor_msgs.msg import PointCloud2
from geometry_msgs.msg import PointStamped
import sensor_utils # 自定义坐标转换工具
def remove_dynamic_points(ros_pointcloud, person_boxes):
# 将ROS点云转换为numpy数组
points = sensor_utils.pointcloud2_to_array(ros_pointcloud)
# 假设摄像头与激光雷达已标定,转换坐标系
cam_to_lidar = sensor_utils.get_transform("camera", "lidar")
# 遍历行人边界框,剔除点云中的动态区域
filtered_points = []
for point in points:
# 将点云点转换到相机坐标系
point_cam = cam_to_lidar.inverse() * point
# 检查是否在行人边界框内
if not is_inside_any_box(point_cam, person_boxes):
filtered_points.append(point)
# 生成过滤后的点云
filtered_cloud = sensor_utils.array_to_pointcloud2(filtered_points)
return filtered_cloud
def is_inside_any_box(point, boxes):
for box in boxes:
x_min, y_min, x_max, y_max = box
if x_min < point.x < x_max and y_min < point.y < y_max:
return True
return False
步骤3:ROS节点实现
<!-- launch文件 -->
<launch>
<!-- 激光雷达点云 -->
<node name="laser_node" pkg="your_lidar_pkg" type="laser_publisher"/>
<!-- 相机图像 -->
<node name="camera_node" pkg="your_camera_pkg" type="camera_publisher"/>
<!-- 动态物体检测与点云过滤节点 -->
<node name="dynamic_filter" pkg="your_pkg" type="dynamic_filter_node">
<remap from="/input_cloud" to="/points_raw"/>
<remap from="/output_cloud" to="/filtered_points"/>
</node>
<!-- SLAM节点订阅过滤后的点云 -->
<node name="slam_node" pkg="your_slam_pkg" type="slam_node">
<remap from="/points" to="/filtered_points"/>
</node>
</launch>
2. 路径规划器的“智障”时刻
- 坑点:
- A*算法绕远路,DWA局部避障卡死在U型障碍中。
- 解法:
- 分层规划:全局规划用`NavFn`生成粗略路径,局部规划用`TEB`动态避障。
- 代价地图优化:在`costmap`中膨胀障碍物,预留安全距离。
---
调试篇:从“混沌”到“可控”
1. 仿真与实车的“卖家秀 vs 买家秀”
- 坑点:
- Gazebo仿真流畅,但实车电机响应延迟导致轨迹偏移。
- 解法:
- 注入噪声测试:在仿真中添加传感器噪声和电机延迟模型。
- 硬件在环(HIL):将真实电机控制器接入仿真环境测试。
2. 日志记录的“马后炮”问题
- 坑点:
- 实车失控时,`rosbag`记录不全,无法复现Bug。
- 解法:
- 关键数据快照:用`rosbag record -l 100`仅缓存最近100条消息。
- 自动触发录制:当检测到异常加速度时,自动启动录制。
---
团队协作篇:1+1<2的尴尬
1. 代码合并的“灾难现场”
- 坑点:
- 多人修改同一launch文件导致功能冲突。
- 解法:
- 模块化设计:每个功能(如感知、控制)独立为Git子模块。
- CI/CD自动化:用GitHub Actions自动编译并测试代码合并后的兼容性。
2. “最后一夜”的版本回滚
- 坑点:
- 赛前优化代码反而引发未知Bug。
- 解法:
- 锁定版本:决赛前冻结代码库,禁止非必要修改。
- 快速回滚脚本:用`git tag`标记稳定版本,一键切换。
---
赛场实战篇:不可预知的“惊喜”
光照/电磁干扰
- 坑点:
- 场地强光导致摄像头过曝,电磁干扰使IMU数据异常。
- 解法:
- 自适应曝光:调用摄像头SDK动态调整曝光参数(如`v4l2-ctl`命令)。
- 硬件屏蔽:用铝箔包裹IMU线缆,减少电磁干扰。
终极建议:备赛的“生存法则”
1. 分阶段验证:
- 第一阶段:硬件单体测试(传感器+供电)。
- 第二阶段:算法仿真测试(Gazebo+RViz)。
- 第三阶段:实车低速封闭环境测试。
- 第四阶段:全速压力测试(故意制造障碍物)。
2. 备件清单:
- 必带:USB集线器、网线、5V/12V移动电源。
- 选带:备用激光雷达、可编程继电器(应对急停)。
3. 赛场调试优先级:
- 第一级:传感器数据是否正常(用`rostopic hz`检查)。
- 第二级:里程计是否漂移(对比`/odom`和`/tf`)。
- 第三级:控制指令能否执行(监听`/cmd_vel`)。
通过系统性规避这些“坑”,队伍不仅能提升技术实力,更能培养出应对复杂场景的工程化思维——而这正是竞赛之外更宝贵的收获。如果需要所有源码私信博主