2025年第27届中国机器人及人工智能大赛自主巡航实战经验分享

作为连续两届参加中国机器人及人工智能大赛并拿下国一的"老兵",我想跟大家分享一些在自主巡航项目中的实战经验。这个项目看起来简单,但真正做起来才发现里面有太多坑需要踩,希望我的一些经验能让你少走弯路。

一、项目实战理解

刚开始接触这个项目时,我和团队都以为主要难点在于算法的精巧设计。结果第一年比赛只拿了个国二,回来复盘才发现,比赛成败的关键不在于算法多高级,而在于系统的鲁棒性和稳定性

场地中那些任务信息图像看似简单,但在不同光照、不同角度下识别难度差异很大。记得去年决赛时,有支985高校的队伍用了很牛的深度学习算法,结果在现场因为光照问题,识别率直接掉到40%以下,连基本的任务点都没完成。

核心任务拆解:

  • 语音识别与播报(10分)
  • 三次任务点识别与到达(60分)
  • 终点到达(10分)
  • 技术文档(10分)

首先要确保60分的基础分稳稳拿到,才有机会冲击更高分数。

二、软件架构实战经验

ROS框架设计

第一年我们用了单体架构,所有功能都堆在一个节点里,结果调试和找bug特别痛苦。第二年重构为多节点设计:

这种模块化设计好处太多了:

  1. 团队可以并行开发
  2. 单元测试变得简单
  3. 找bug和调试效率提高10倍不止

实战代码技巧

1. 激光数据预处理

比赛中经常会遇到激光数据异常的情况,这段代码帮我们解决了很多问题:

// 激光雷达数据异常处理函数
sensor_msgs::LaserScan filterScan(const sensor_msgs::LaserScan& scan) {
    sensor_msgs::LaserScan filtered = scan;
    
    // 1. 剔除无效值
    for (size_t i = 0; i < scan.ranges.size(); i++) {
        if (scan.ranges[i] < scan.range_min || 
            scan.ranges[i] > scan.range_max || 
            !std::isfinite(scan.ranges[i])) {
            filtered.ranges[i] = scan.range_max;  // 将无效值设为最大值
        }
    }
    
    // 2. 中值滤波 (三点滑动窗口)
    for (size_t i = 1; i < filtered.ranges.size() - 1; i++) {
        std::vector<float> window = {
            filtered.ranges[i-1], 
            filtered.ranges[i], 
            filtered.ranges[i+1]
        };
        std::sort(window.begin(), window.end());
        filtered.ranges[i] = window[1];  // 取中值
    }
    
    // 3. 处理反光区域数据跳变
    for (size_t i = 2; i < filtered.ranges.size(); i++) {
        float diff = std::abs(filtered.ranges[i] - filtered.ranges[i-1]);
        if (diff > 0.5 && filtered.ranges[i] > 5.0) {
            filtered.ranges[i] = filtered.ranges[i-1];
        }
    }
    
    return filtered;
}
2. 视觉自适应增强

不同场地光照差异很大,这段代码可以自动调整图像处理参数

def adaptive_image_processing(image):
    """根据图像特性自动调整处理参数"""
    # 计算图像亮度直方图
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
    
    # 计算亮度均值和标准差
    mean_brightness = np.mean(gray)
    std_brightness = np.std(gray)
    
    # 根据亮度特性调整参数
    if mean_brightness < 80:  # 低光环境
        alpha = 1.5  # 增加对比度
        beta = 25    # 增加亮度
    elif mean_brightness > 180:  # 高光环境
        alpha = 0.7  # 降低对比度
        beta = -20   # 降低亮度
    else:  # 正常光照
        alpha = 1.0
        beta = 0
    
    # 应用亮度调整
    adjusted = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
    
    # 光照均衡化处理
    if std_brightness > 60:  # 光照不均匀
        # 转到LAB色彩空间进行亮度均衡化
        lab = cv2.cvtColor(adjusted, cv2.COLOR_BGR2LAB)
        l, a, b = cv2.split(lab)
        clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
        cl = clahe.apply(l)
        merged = cv2.merge((cl, a, b))
        return cv2.cvtColor(merged, cv2.COLOR_LAB2BGR)
    else:
        return adjusted

这个函数在我们决赛中立了大功,解决了场馆顶部射灯照射导致的图像过曝问题。

三、核心算法实战选择

SLAM定位算法

我们测试过三种主流SLAM算法的性能表现

实战经验: 正式比赛我们用Cartographer,虽然占用资源多,但闭环检测能力强,精度高。关键参数调优是:

# cartographer.lua中的关键参数
TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80  # 减小以降低延迟
TRAJECTORY_BUILDER_2D.min_range = 0.15  # 设置为激光雷达最小值
TRAJECTORY_BUILDER_2D.max_range = 12.0  # 设置为激光雷达最大值
TRAJECTORY_BUILDER_2D.missing_data_ray_length = 5.0  # 处理遮挡
POSE_GRAPH.optimization_problem.huber_scale = 1e2  # 提高优化稳定性
POSE_GRAPH.constraint_builder.min_score = 0.55  # 提高约束阈值

视觉识别方案

不要迷信单一的深度学习模型,我们的最佳方案是多模型融合

def ensemble_prediction(image):
    """多模型融合预测"""
    # 使用不同模型进行预测
    yolo_results = yolo_model.predict(image)
    resnet_results = resnet_model.predict(image)
    
    # 目标检测结果融合
    all_boxes = []
    
    # 添加YOLO检测框
    for det in yolo_results:
        x1, y1, x2, y2 = det['bbox']
        confidence = det['confidence'] * 0.6  # YOLO权重
        label = det['class']
        all_boxes.append([x1, y1, x2, y2, confidence, label])
    
    # 添加ResNet检测框
    for det in resnet_results:
        x1, y1, x2, y2 = det['bbox']
        confidence = det['confidence'] * 0.4  # ResNet权重
        label = det['class']
        all_boxes.append([x1, y1, x2, y2, confidence, label])
    
    # 非极大值抑制
    final_boxes = non_maximum_suppression(all_boxes, 0.5)
    
    # 标签投票
    final_results = []
    for box_group in final_boxes:
        # 计算平均边界框
        avg_box = calculate_average_box(box_group)
        
        # 标签投票
        labels = [b[5] for b in box_group]
        label = most_common(labels)
        
        # 计算置信度
        confidence = sum([b[4] for b in box_group])
        
        final_results.append({
            'bbox': avg_box,
            'class': label,
            'confidence': confidence
        })
    
    return final_results

这种多模型融合方法在不稳定光照条件下识别率要高15%左右,虽然计算开销大了点,但值得。

 四、导航平滑性优化

速度平滑滤波器

导航卡顿的核心问题是速度命令变化过于剧烈。我们实现了一种基于双指数平滑的速度命令过滤器:

class VelocityFilter {
public:
    VelocityFilter(double alpha = 0.3, double beta = 0.1) 
        : alpha_(alpha), beta_(beta), 
          s_x_(0), s_y_(0), s_theta_(0), 
          b_x_(0), b_y_(0), b_theta_(0),
          initialized_(false) {}
    
    geometry_msgs::Twist filter(const geometry_msgs::Twist& raw_cmd) {
        if (!initialized_) {
            // 初始化
            s_x_ = raw_cmd.linear.x;
            s_y_ = raw_cmd.linear.y;
            s_theta_ = raw_cmd.angular.z;
            b_x_ = 0;
            b_y_ = 0;
            b_theta_ = 0;
            initialized_ = true;
            return raw_cmd;
        }
        
        // 双指数平滑滤波器
        // 更新级数项
        double s_x_prev = s_x_;
        double s_y_prev = s_y_;
        double s_theta_prev = s_theta_;
        
        s_x_ = alpha_ * raw_cmd.linear.x + (1 - alpha_) * (s_x_prev + b_x_);
        s_y_ = alpha_ * raw_cmd.linear.y + (1 - alpha_) * (s_y_prev + b_y_);
        s_theta_ = alpha_ * raw_cmd.angular.z + (1 - alpha_) * (s_theta_prev + b_theta_);
        
        // 更新趋势项
        b_x_ = beta_ * (s_x_ - s_x_prev) + (1 - beta_) * b_x_;
        b_y_ = beta_ * (s_y_ - s_y_prev) + (1 - beta_) * b_y_;
        b_theta_ = beta_ * (s_theta_ - s_theta_prev) + (1 - beta_) * b_theta_;
        
        // 构造平滑后的速度命令
        geometry_msgs::Twist filtered_cmd;
        filtered_cmd.linear.x = s_x_ + b_x_;
        filtered_cmd.linear.y = s_y_ + b_y_;
        filtered_cmd.angular.z = s_theta_ + b_theta_;
        
        return filtered_cmd;
    }
    
private:
    double alpha_;  // 数据项权重
    double beta_;   // 趋势项权重
    
    // 平滑值
    double s_x_, s_y_, s_theta_;
    
    // 趋势值
    double b_x_, b_y_, b_theta_;
    
    bool initialized_;
};

 TEB参数优化

通过对比测试,我们总结出一套最优的TEB局部规划器参数:

 

TebLocalPlannerROS:
  # 机器人配置
  max_vel_x: 0.35
  max_vel_x_backwards: 0.1
  max_vel_y: 0.35
  max_vel_theta: 0.8
  acc_lim_x: 0.2
  acc_lim_y: 0.2
  acc_lim_theta: 0.3
  min_turning_radius: 0.0
  
  # 轨迹配置
  teb_autosize: True
  dt_ref: 0.4
  dt_hysteresis: 0.1
  global_plan_overwrite_orientation: True
  max_global_plan_lookahead_dist: 2.0
  feasibility_check_no_poses: 5
  
  # 优化配置
  no_inner_iterations: 5
  no_outer_iterations: 4
  penalty_epsilon: 0.05
  weight_max_vel_x: 1.0
  weight_max_vel_y: 1.0
  weight_max_vel_theta: 1.0
  weight_acc_lim_x: 2.0
  weight_acc_lim_y: 2.0
  weight_acc_lim_theta: 2.0
  weight_kinematics_nh: 1000.0
  weight_kinematics_forward_drive: 100.0
  weight_optimaltime: 1.0
  weight_obstacle: 50.0
  weight_inflation: 0.1
  
  # 平滑参数(关键部分)
  weight_adapt_factor: 2.0
  enable_homotopy_class_planning: False
  simple_exploration: False

在比赛间隙调整这些参数时,我习惯按照这个顺序调整:先调速度限制,再调加速度限制,然后是权重参数。最关键的三个参数是weight_kinematics_forward_driveweight_obstacleacc_lim_theta

五、实战踩坑与应对

1. 机械结构问题

第一年比赛,我们的摄像头固定方式太简单,用的3D打印支架。结果比赛中底盘急停导致摄像头大幅晃动,视觉识别全乱了。

解决方案: 第二年改用铝合金框架 + 减震垫,效果好很多。记住一点:不要低估机械振动对传感器的影响

2. 光照变化

比赛场地光照往往是最大变数。记得去年西安的比赛,场馆靠窗一侧阳光直射,另一侧则很暗。

解决方案:

  • 视觉算法做好自适应处理
  • 提前20分钟进场调试
  • 准备多套参数配置,快速切换

3. 定位丢失

导航过程中定位丢失是常见问题。一个队友不小心走进场地或者场地有高反光材料,都可能导致定位失败。

def emergency_relocation():
    """定位丢失应急处理"""
    # 1. 停止当前导航
    stop_navigation()
    
    # 2. 切换为原地旋转模式采集数据
    cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=1)
    twist = Twist()
    twist.angular.z = 0.5  # 缓慢旋转
    
    # 发送旋转命令5秒
    start_time = rospy.Time.now()
    rate = rospy.Rate(10)
    while (rospy.Time.now() - start_time).to_sec() < 5.0:
        cmd_vel.publish(twist)
        rate.sleep()
    
    # 3. 停止旋转
    twist.angular.z = 0.0
    cmd_vel.publish(twist)
    
    # 4. 尝试使用特征点匹配重定位
    success = feature_based_relocalization()
    
    if success:
        rospy.loginfo("重定位成功,继续导航")
        resume_navigation()
    else:
        rospy.logwarn("重定位失败,切换到紧急模式")
        switch_to_emergency_mode()

 

六、总结与建议

如果让我给参加自主巡航项目的同学们一些建议,那就是:

  1. 基础分最重要:确保导航稳定可靠,拿到60分基础分,再追求更高分数
  2. 系统鲁棒性大于算法先进性:算法再先进,如果不够稳定,在比赛中也会翻车
  3. 充分测试各种极端情况:刻意制造干扰和异常,测试系统恢复能力
  4. 做好知识积累和经验传承:记录所有问题和解决方案,避免后来者重复踩坑

技术上,我的几点关键建议:

  • 多传感器融合是解决单一传感器不稳定的最佳方案
  • 参数自适应比固定参数在实际比赛中可靠得多
  • 故障容错机制是区分一般队伍和优秀队伍的关键

最后,希望大家都能享受这个比赛带来的技术挑战!我当年就是在比赛中学到了很多东西,今年我依旧会来参加今年的比赛,如果需要去年的工作空间或者今年的指导私聊博主,非常感谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值