八股文——机器学习基础激活函数

常见的激活函数

为什么说relu是非线性激活函数?

1.relu是分段函数

2.relu本质上是分段线性激活函数,但可以不断分段逼近非线性激活函数

当该网络足够复杂时,理论上relu可以逼近任意非线性激活函数

激活函数有什么性质?

1.非线性:当激活函数是非线性的,一个两层的神经网络就可以逼近所有函数。

2.可微性:当优化函数是基于梯度的时候,都体现该性质

3.单调性:对于单层网络而言,能保证时凸函数

4.f(x)≈x:激活函数满足这个形式时,如果参数初始化是随机的较小值,训练将会很高效;如果不满足,就需要详细设置初始值

5.输出值的范围:如果有限,基于梯度的优化方法会更稳定;当输出无限,模型的训练会更高效

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值