常见的激活函数
为什么说relu是非线性激活函数?
1.relu是分段函数
2.relu本质上是分段线性激活函数,但可以不断分段逼近非线性激活函数
当该网络足够复杂时,理论上relu可以逼近任意非线性激活函数
激活函数有什么性质?
1.非线性:当激活函数是非线性的,一个两层的神经网络就可以逼近所有函数。
2.可微性:当优化函数是基于梯度的时候,都体现该性质
3.单调性:对于单层网络而言,能保证时凸函数
4.f(x)≈x:激活函数满足这个形式时,如果参数初始化是随机的较小值,训练将会很高效;如果不满足,就需要详细设置初始值
5.输出值的范围:如果有限,基于梯度的优化方法会更稳定;当输出无限,模型的训练会更高效