矩阵空间、秩1矩阵和小世界图-线性代数课时11(MIT Linear Algebra , Gilbert Strang)

        这是Strang教授的第十一讲,讲解的内容是矩矩阵空间(一个新的“向量”空间)的一组基,秩1矩阵的特殊性和小世界图(small world graphs),小世界图引出图论与线性代数的关系。

矩阵空间

        矩阵空间满足向量空间的定义,对加法和数乘封闭。比如所有的3x3实数矩阵构成一个空间M,3x3对称矩阵矩阵构成它的一个子空间S,3x3的上三角矩阵同样构成它的一个子空间U。根据基和维数的定义,可以很轻松的确定所有3x3实数矩阵的一组基,从基的个数知道维数是9,M的一组基:

        \begin{bmatrix} 1 &0 &0 \\ 0 & 0 & 0\\ 0 & 0 &0 \end{bmatrix},\begin{bmatrix} 0 &1 &0 \\ 0 & 0 & 0\\ 0 & 0 &0 \end{bmatrix},...,\begin{bmatrix} 0 &0 &0 \\ 0 & 0 & 0\\ 0 & 1 &0 \end{bmatrix},\begin{bmatrix} 0 &0 &0 \\ 0 & 0 & 0\\ 0 & 0 &1 \end{bmatrix}

       3x3的对称矩阵的维数是6,3x3的上三角矩阵的维数也是6,思考一下为什么是6,从基和维数的概念出发,很容易确定它们的一组基都包含6个矩阵。3x3对称矩阵的一组基可以取对角线上的3个元素各自为1,其它为0的3个矩阵和对角线上三个元素各自为1并且对应对角线下方的元素也为1,其它元素为0的3个矩阵,构成它的一组基:

         \begin{bmatrix} 1 &0 &0 \\ 0& 0 &0 \\ 0&0 & 0 \end{bmatrix},\begin{bmatrix} 0 &0 &0 \\ 0& 1 &0 \\ 0&0 & 0 \end{bmatrix}, \begin{bmatrix} 0&0 &0 \\ 0& 0 &0 \\ 0&0 & 1 \end{bmatrix}, \begin{bmatrix} 0 &1 &0 \\ 1& 0 &0 \\ 0&0 & 0 \end{bmatrix}, \begin{bmatrix} 0 &0 &0 \\ 0& 0 &1 \\ 0&1 & 0 \end{bmatrix}, \begin{bmatrix} 0 &0 &1 \\ 0& 0 &0 \\ 1&0 & 0 \end{bmatrix}

        而3x3的上三角矩阵的一组基更简单,取上面给出的M的一组基中,1在对角线和对角线之上的6个矩阵就构成了3x3上三角矩阵的一组基:

        \begin{bmatrix} 1 &0 &0 \\ 0& 0 & 0\\ 0 &0 &0 \end{bmatrix},\begin{bmatrix} 0 &1 &0 \\ 0& 0 & 0\\ 0 &0 &0 \end{bmatrix}, \begin{bmatrix} 0 &0 &1 \\ 0& 0 & 0\\ 0 &0 &0 \end{bmatrix}, \begin{bmatrix} 0 &0 &0 \\ 0& 1 & 0\\ 0 &0 &0 \end{bmatrix}, \begin{bmatrix} 0 &0 &0 \\ 0& 0 & 1\\ 0 &0 &0 \end{bmatrix}, \begin{bmatrix} 0 &0 &0 \\ 0& 0 & 0\\ 0 &0 &1 \end{bmatrix}

       矩阵空间是应用广泛的一类“向量”空间,另外还有一类应用十分广泛的“向量”空间就是函数空间,线性代数里只是略作提及,这里以一个例子介绍一下函数空间以及函数空间的的“基”,下面的线性微分方程:

        d^2y/dx^2+y=0

        上面的线性微分方程的解是这样一个线性组合:csinx+dcosxcsinx+dcosx是线性微分方程的解空间,它的一组基是sinx,cosx,解空间的维数是基的个数2.

秩1矩阵

        秩1矩阵是一类特殊的矩阵,以下面的例子来说明秩1矩阵的特殊性,有矩阵A:

        A=\begin{bmatrix} 1 &4 &5 \\ 2& 8 &10 \end{bmatrix}

        它可以写成如下形式:A=uv^T,如下:

        \begin{bmatrix} 1 &4 &5 \\ 2& 8 &10 \end{bmatrix}=\begin{bmatrix} 1 \\2 \end{bmatrix}\begin{bmatrix} 1 &4 &5 \end{bmatrix}

        所有的秩1矩阵都可以写成一个列向量和一个行向量的相乘的形式,对于mxn的秩1矩阵它的行空间是R^n中的一条直线,列空间是R^m中的一条直线,它的零空间是垂直于v的平面,因为u(v^Tx)=0.

小世界图

        小世界图引出线性代数和图论的联系,那么什么是这里所指的图呢?图是指节点和边组合成的网络,比如下面是一幅由5个节点和6条边的组成的图:

        

        对于上面这样一幅由5个节点和6条边构成的图,可以用一个6x5的矩阵完整的表达图中的所有信息,也就是通过6x5的矩阵可以对这样一幅图通过线性代数的方式建模,继而求得人们对这幅图想要找出的一些解。图很重要,比如人与人之间的关系可以构成一张图,互联网上主机的链接关系可以构成一张巨大的图,城市之间的可达路径可以构成一张图,这些都是有实际意义和应用的图。通过矩阵的方式表达图中的所有信息,表明我们可以通过线性代数的方式来解答这样的实际问题。

        本节课的内容比较零散,矩阵空间对应的是3.5章节关于线性相关性、基和维数最后一点剩余的内容,秩1矩阵是3.6章节关于矩阵的4个基本子空间的最后一点剩余的类容,而小世界图是8.2章节图和网络应用的开端。

下节课图和网络-线性代数课时12(MIT Linear Algebra , Gilbert Strang)

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值