概率论与数理统计系列笔记之第三章——多维随机变量及其分布

概率论与数理统计笔记(第三章 多维随机变量及其分布)

对于统计专业来说,书本知识总有遗忘,翻看教材又太麻烦,于是打算记下笔记与自己的一些思考,主要参考用书是茆诗松老师编写的《概率论与数理统计教程》,其他知识待后续书籍补充。

第三章 多维随机变量及其分布

3.1 多维随机向量及其联合分布

3.1.1 多维随机变量

下面我们先给出 n n n 维随机变量的定义.
定义 3.1.1
如果 X 1 ( ω ) , X 2 ( ω ) , ⋯   , X n ( ω ) X_1(\omega), X_2(\omega), \cdots, X_n(\omega) X1(ω),X2(ω),,Xn(ω) 是定义在同一个样本空间 Ω = \Omega= Ω= { ω } \{\omega\} {ω} 上的 n n n 个随机变量, 则称
X ( ω ) = ( X 1 ( ω ) , X 2 ( ω ) , ⋯   , X n ( ω ) ) X(\omega)=\left(X_1(\omega), X_2(\omega), \cdots, X_n(\omega)\right) X(ω)=(X1(ω),X2(ω),,Xn(ω))
n n n 维 (或 n n n 元) 随机变量或随机向量.

3.1 .2 联合分布函数

定义 3.1.2
对任意的 n n n 个实数 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn, 则 n n n 个事件 { X 1 ⩽ x 1 } , { X 2 ⩽ \left\{X_1 \leqslant x_1\right\}, \{X_2 \leqslant {X1x1},{X2 x 2 } , ⋯   , { X n ⩽ x n } x_2\}, \cdots,\{X_n \leqslant x_n \} x2},,{Xnxn} 同时发生的概率
F ( x 1 , x 2 , ⋯   , x n ) = P ( X 1 ⩽ x 1 , X 2 ⩽ x 2 , ⋯   , X n ⩽ x n ) F\left(x_1, x_2, \cdots, x_n\right)=P\left(X_1 \leqslant x_1, X_2 \leqslant x_2, \cdots, X_n \leqslant x_n\right) F(x1,x2,,xn)=P(X1x1,X2x2,,Xnxn)
称为 n n n 维随机变量 ( X 1 , X 2 , ⋯   , X n ) \left(X_1, X_2, \cdots, X_n\right) (X1,X2,,Xn) 的联合分布函数.

定理 3.1.1 任一二维联合分存函数 F ( x , y ) F(x, y) F(x,y) 必具有如下四条基本性质:
(1) 单调性
F ( x , y ) F(x, y) F(x,y) 分别对 x x x y y y 是 单调非减的, 即
x 1 < x 2 x_1<x_2 x1<x2 时, 有 F ( x 1 , y ) ⩽ F ( x 2 , y ) F\left(x_1, y\right) \leqslant F\left(x_2, y\right) F(x1,y)F(x2,y),
y 1 < y 2 y_1<y_2 y1<y2 时, 有 F ( x , y 1 ) ⩽ F ( x , y 2 ) F\left(x, y_1\right) \leqslant F\left(x, y_2\right) F(x,y1)F(x,y2).
(2) 有界性
对任意的 x x x y y y, 有 0 ⩽ 0 \leqslant 0 F ( x , y ) ⩽ 1 F(x, y) \leqslant 1 F(x,y)1, 且
F ( − ∞ , y ) = lim ⁡ x → − ∞ F ( x , y ) = 0 , F ( x , − ∞ ) = lim ⁡ → − ∞ F ( x , y ) = 0 , F ( ∞ , ∞ ) = lim ⁡ x , y → ∞ F ( x , y ) = 1. \begin{aligned} &F(-\infty, y)=\lim _{x \rightarrow-\infty} F(x, y)=0, \\ &F(x,-\infty)=\lim _{\rightarrow-\infty} F(x, y)=0, \\ &F(\infty, \infty)=\lim _{x, y \rightarrow \infty} F(x, y)=1 . \end{aligned} F(,y)=xlimF(x,y)=0,F(x,)=limF(x,y)=0,F(,)=x,ylimF(x,y)=1.
(3) 右连续性
对每个变量都是右连续的, 即
F ( x + 0 , y ) = F ( x , y ) , F ( x , y + 0 ) = F ( x , y ) . \begin{aligned} &F(x+0, y)=F(x, y), \\ &F(x, y+0)=F(x, y) . \end{aligned} F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).
(4) 非负性
对任意的 a < b , c < d a<b, c<d a<b,c<d
P ( a < X ⩽ b , c < Y ⩽ d ) = F ( b , d ) − F ( a , d ) − F ( b , c ) + F ( a , c ) ⩾ 0. \begin{aligned} & P(a<X \leqslant b, c<Y \leqslant d) \\ =& F(b, d)-F(a, d)-F(b, c)+F(a, c) \geqslant 0 . \end{aligned} =P(a<Xb,c<Yd)F(b,d)F(a,d)F(b,c)+F(a,c)0.

3.1.3 联合分布列

定义 3.1.3
如果二维随机变量 ( X , Y ) (X, Y) (X,Y) 只取有限个或可列个数对 ( x i , y j ) \left(x_i, y_j\right) (xi,yj), 则称 ( X , Y ) (X, Y) (X,Y) 为二维离散随机变量, 称
p i j = P ( X = x i , Y = y j ) , i , j = 1 , 2 , ⋯ p_{i j}=P\left(X=x_i, Y=y_j\right) , \quad i, j=1,2, \cdots pij=P(X=xi,Y=yj)i,j=1,2,
( X , Y ) (X, Y) (X,Y) 的联合分布列.

联合分布列的基本性质:
(1) 非负性 p i j ⩾ 0 p_{i j} \geqslant 0 pij0.
(2) 正则性 ∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{i j}=1 i=1j=1pij=1.

3.1.4 联合密度函数

定义 3.1.4 如果存在二元非负函数 p ( x , y ) p(x, y) p(x,y), 使得二维随机变量 ( X , Y ) (X, Y) (X,Y) 的 分布函数 F ( x , y ) F(x, y) F(x,y) 可表示为
F ( x , y ) = ∫ − ∞ x ∫ − ∞ y p ( u , v ) d v   d u , F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^y p(u, v) \mathrm{d} v \mathrm{~d} u, F(x,y)=xyp(u,v)dv du,
则称 ( X , Y ) (X, Y) (X,Y) 为二维连续随机变量, 称 p ( u , v ) p(u, v) p(u,v) ( X , Y ) (X, Y) (X,Y) 的联合密度函数.

联合密度函数的基本性质:
(1)非负性 p ( x , y ) ⩾ 0 p(x, y) \geqslant 0 p(x,y)0.
(2)正则性 ∫ − ∞ ∞ ∫ − ∞ ∞ p ( x , y ) d y   d x = 1 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \mathrm{d} y \mathrm{~d} x=1 p(x,y)dy dx=1.
给出联合密度函数 p ( x , y ) p(x, y) p(x,y), 就可以求有关事件的概率了. 若 G G G 为平面上的一个区域, 则事件 { ( X , Y ) ∈ G } \{(X, Y) \in G\} {(X,Y)G} 的概率可表示为在 G G G 上对 p ( x , y ) p(x, y) p(x,y) 的二重积分
P ( ( X , Y ) ∈ G ) = ∬ G p ( x , y ) d x   d y . P((X, Y) \in G)=\iint_G p(x, y) \mathrm{d} x \mathrm{~d} y . P((X,Y)G)=Gp(x,y)dx dy.

3.1.5 常用多维分布

下面介绍一些多维随机变量的常用分布.
一、多项分布
多项分布是重要的多维离散分布,它是二项分布的推广.
进行 n n n 次独立重复试验, 如果每次试验有 r r r 个互不相容结果: A 1 , A 2 , ⋯   , A r A_1, A_2, \cdots, A_r A1,A2,,Ar 之一发生, 且每次试验中 A i A_i Ai 发生的概率为 p i = P ( A i ) , i = 1 , 2 , ⋯   , r p_i=P\left(A_i\right), i=1,2, \cdots, r pi=P(Ai),i=1,2,,r, 且 p 1 + p 2 + ⋯ + p_1+p_2+\cdots+ p1+p2++ p s = 1 p_s=1 ps=1. 记 X i X_i Xi n n n 次独立重复试验中 A i A_i Ai 出现的次数, i = 1 , 2 , ⋯   , r i=1,2, \cdots, r i=1,2,,r. 则 ( X 1 , X 2 , ⋯   \left(X_1, X_2, \cdots\right. (X1,X2,, X r ) \left.X_r\right) Xr) 取值 ( n 1 , n 2 , ⋯   , n r ) \left(n_1, n_2, \cdots, n_r\right) (n1,n2,,nr) 的概率, 即 A 1 A_1 A1 出现 n 1 n_1 n1 次, A 2 A_2 A2 出现 n 2 n_2 n2 次, ⋯ ⋯   , A r \cdots \cdots, A_{r} ,Ar出现 n r n_r nr 次的概率为
P ( X 1 = n 1 , X 2 = n 2 , ⋯   , X r = n r ) = n ! n 1 ! n 2 ! ⋯ n r ! p 1 n 1 p 2 n 2 … p r n r , P\left(X_1=n_1, X_2=n_2, \cdots, X_r=n_r\right)=\frac{n !}{n_{1} ! n_{2} ! \cdots n_{r} !} p_1^{n_1} p_2^{n_2} \ldots p_r^{n_r}, P(X1=n1,X2=n2,,Xr=nr)=n1!n2!nr!n!p1n1p2n2prnr,
其中 n = n 1 + n 2 + ⋯ + n r n=n_1+n_2+\cdots+n_r n=n1+n2++nr.

二、多维超几何分布
袋中有 N N N 个球, 其中有 N i N_i Ni i i i 号球, i = 1 i=1 i=1, 2 , ⋯   , r 2, \cdots, r 2,,r, 且 N = N 1 + N 2 + ⋯ + N r N=N_1+N_2+\cdots+N_r N=N1+N2++Nr. 从中任意取出 n n n 个. 若记 X i X_i Xi 为取出的 n n n 个球中 i i i 号 球的个数, i = 1 , 2 , ⋯   , r i=1,2, \cdots, r i=1,2,,r, 则
P ( X 1 = n 1 , X 2 = n 2 , ⋯   , X r = n r ) = ( N 1 n 1 ) ( N 2 n 2 ) ⋯ ( N r n r ) ( N n ) , P\left(X_1=n_1, X_2=n_2, \cdots, X_r=n_r\right)=\frac{\left(\begin{array}{l} N_1 \\ n_1 \end{array}\right)\left(\begin{array}{l} N_2 \\ n_2 \end{array}\right) \cdots\left(\begin{array}{l} N_r \\ n_r \end{array}\right)}{\left(\begin{array}{l} N \\ n \end{array}\right)}, P(X1=n1,X2=n2,,Xr=nr)=(Nn)(N1n1)(N2n2)(Nrnr),
其中 n 1 + n 2 + ⋯ + n c = n n_1+n_2+\cdots+n_c=n n1+n2++nc=n.

三、多维均匀分布
D D D R n \mathbf{R}^n Rn 中的一个有界区域,其度量(平面的为面积,空间的为体积等)为 S D S_D SD, 如果多维随机变量 ( X 1 , X 2 , ⋯   , X n ) \left(X_1, X_2, \cdots, X_n\right) (X1,X2,,Xn) 的联合密度函数为
p ( x 1 , x 2 , ⋯   , x n ) = { 1 S D , ( x 1 , x 2 , ⋯   , x n ) ∈ D , 0 ,  其他.  p\left(x_1, x_2, \cdots, x_n\right)= \begin{cases}\frac{1}{S_D}, & \left(x_1, x_2, \cdots, x_n\right) \in D , \\ 0, & \text { 其他. }\end{cases} p(x1,x2,,xn)={SD1,0,(x1,x2,,xn)D 其他
则称 ( X 1 , X 2 , ⋯   , X n ) \left(X_1, X_2, \cdots, X_n\right) (X1,X2,,Xn) 服从 D D D 上的多维均匀分布, 记为 ( X 1 , X 2 , ⋯   , X n ) ∼ U ( D ) \left(X_1, X_2, \cdots, X_n\right) \sim U(D) (X1,X2,,Xn)U(D).

四、二元正态分布
如果二维随机变量 ( X , Y ) (X, Y) (X,Y) 的联合密度函数为
p ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } , − ∞ < x , y < ∞ , \begin{aligned} p(x, y)=& \frac{1}{2 \pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}} \exp \left\{-\frac{1}{2\left(1-\rho^2\right)}\left[\frac{\left(x-\mu_1\right)^2}{\sigma_1^2}\right.\right.\\ &\left.\left.-2 \rho \frac{\left(x-\mu_1\right)\left(y-\mu_2\right)}{\sigma_1 \sigma_2}+\frac{\left(y-\mu_2\right)^2}{\sigma_2^2}\right]\right\},-\infty<x, y<\infty, \end{aligned} p(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]},<x,y<,
则称 ( X , Y ) (X, Y) (X,Y) 服从二元正态分布, 记为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X, Y) \sim N\left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho\right) (X,Y)N(μ1,μ2,σ12,σ22,ρ). 其中五个参数的取值范围分别是
− ∞ < μ 1 , μ 2 < ∞ , σ 1 , σ 2 > 0 , − 1 ⩽ ρ ⩽ 1 .  -\infty<\mu_1, \mu_2<\infty, \quad \sigma_1, \sigma_2>0, \quad-1 \leqslant \rho \leqslant 1 \text {. } <μ1,μ2<,σ1,σ2>0,1ρ1
以后将指出: μ 1 , μ 2 \mu_1, \mu_2 μ1,μ2 分别是 X X X Y Y Y 的均值, σ 1 2 , σ 2 2 \sigma_1^2, \sigma_2^2 σ12,σ22 分别是 X X X Y Y Y 的方差, ρ \rho ρ X X X Y Y Y 的相关系数.

3.2 边际分布与随机变量的独立性

3.2.1 边际分布函数

如果在二维随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布函数 F ( x , y ) F(x, y) F(x,y) 中令 y → ∞ y \rightarrow \infty y, 由于 { Y < ∞ } \{Y<\infty\} {Y<} 为必然事件, 故可得
lim ⁡ y → ∞ F ( x , y ) = P ( X ⩽ x , Y < ∞ ) = P ( X ⩽ x ) , \lim _{y\rightarrow \infty} F(x, y)=P(X \leqslant x, Y<\infty)=P(X \leqslant x), ylimF(x,y)=P(Xx,Y<)=P(Xx),
这是由 ( X , Y ) (X, Y) (X,Y) 的联合分布函数 F ( x , y ) F(x, y) F(x,y) 求得的 X X X 的分布函数, 被称为 X X X 的边际分布, 记为
F X ( x ) = F ( x , ∞ ) . F_X(x)=F(x, \infty) . FX(x)=F(x,).
类似地, 在 F ( x , y ) F(x, y) F(x,y) 中令 x → ∞ x \rightarrow \infty x, 可得 Y Y Y 的边际分布
F Y ( y ) = F ( ∞ , y ) . F_Y(y)=F(\infty, y) . FY(y)=F(,y).
在三维随机变量 ( X , Y , Z ) (X, Y, Z) (X,Y,Z) 的联合分布函数 F ( x , y , z ) F(x, y, z) F(x,y,z) 中, 用类似的方法可得到更多的边际分布函数:
F x ( x ) = F ( x , ∞ , ∞ ) , F y ( y ) = F ( ∞ , y , ∞ ) , F z ( z ) = F ( ∞ , ∞ , z ) , F x , y ( x , y ) = F ( x , y , ∞ ) , F x , z ( x , z ) = F ( x , ∞ , z ) , F y , z ( y , z ) = F ( ∞ , y , z ) . \begin{aligned} &F_x(x)=F(x, \infty, \infty), \\ &F_y(y)=F(\infty, y, \infty), \\ &F_z(z)=F(\infty, \infty, z), \\ &F_{x, y}(x, y)=F(x, y, \infty), \\ &F_{x, z}(x, z)=F(x, \infty, z), \\ &F_{y, z}(y, z)=F(\infty, y, z) . \end{aligned} Fx(x)=F(x,,),Fy(y)=F(,y,),Fz(z)=F(,,z),Fx,y(x,y)=F(x,y,),Fx,z(x,z)=F(x,,z),Fy,z(y,z)=F(,y,z).
在更高维的场合, 也可类似地从联合分布函数获得其低维的边际分布函数.

3.2.2 边际分布列

在二维离散随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布列 { P ( X = x i , Y = y j ) } \left\{ P\left(X=x_i, Y=y_j\right)\right\} {P(X=xi,Y=yj)} 中, 对 j j j 求和所得的分布列
∑ j = 1 ∞ P ( X = x i , Y = y j ) = P ( X = x i ) , i = 1 , 2 , ⋯ \sum_{j=1}^{\infty} P\left(X=x_i, Y=y_j\right)=P\left(X=x_i\right) , i=1,2, \cdots j=1P(X=xi,Y=yj)=P(X=xi)i=1,2,
被称为 X X X 的边际分布列. 类似地, 对 i i i 求和所得的分布列
∑ i = 1 ∞ P ( X = x i , Y = y j ) = P ( Y = y j ) , j = 1 , 2 , ⋯ \sum_{i=1}^{\infty} P\left(X=x_i, Y=y_j\right)=P\left(Y=y_j\right), j=1,2, \cdots i=1P(X=xi,Y=yj)=P(Y=yj),j=1,2,
被称为 Y Y Y 的边际分布列.

3.2.3 边际密度函数

如果二维连续随机变量 ( X , Y ) (X, Y) (X,Y) 的联合密度函数为 p ( x , y ) p(x, y) p(x,y), 因为
F X ( x ) = F ( x , ∞ ) = ∫ − ∞ x ( ∫ − ∞ ∞ p ( u , v ) d v ) d u = ∫ − ∞ x p X ( u ) d u , F Y ( y ) = F ( ∞ , y ) = ∫ − ∞ y ( ∫ − ∞ ∞ p ( u , v ) d u ) d v = ∫ − ∞ y p Y ( v ) d v , \begin{aligned} &F_X(x)=F(x, \infty)=\int_{-\infty}^x\left(\int_{-\infty}^{\infty} p(u, v) \mathrm{d} v\right) \mathrm{d} u=\int_{-\infty}^x p_X(u) \mathrm{d} u, \\ &F_Y(y)=F(\infty, y)=\int_{-\infty}^{y}\left(\int_{-\infty}^{\infty} p(u, v) \mathrm{d} u\right) \mathrm{d} v=\int_{-\infty}^y p_Y(v) \mathrm{d} v, \end{aligned} FX(x)=F(x,)=x(p(u,v)dv)du=xpX(u)du,FY(y)=F(,y)=y(p(u,v)du)dv=ypY(v)dv,
其中 p X ( x ) p_X(x) pX(x) p Y ( y ) p_Y(y) pY(y) 分别为
p x ( x ) = ∫ − ∞ ∞ p ( x , y ) d y , p y ( y ) = ∫ − ∞ ∞ p ( x , y ) d x . \begin{aligned} &p_x(x)=\int_{-\infty}^{\infty} p(x, y) \mathrm{d} y, \\ &p_y(y)=\int_{-\infty}^{\infty} p(x, y) \mathrm{d} x . \end{aligned} px(x)=p(x,y)dy,py(y)=p(x,y)dx.

3.2.4 随机变量间的独立性

定义 3.2.1
n n n 维随机变量 ( X 1 , X 2 , ⋯   , X n ) \left(X_1, X_2, \cdots, X_n\right) (X1,X2,,Xn) 的联合分布函数为 F ( x 1 , x 2 F\left(x_1, x_2\right. F(x1,x2, ⋯   , x n ) , F i ( x i ) \left.\cdots, x_n\right), F_i\left(x_i\right) ,xn),Fi(xi) X i X_i Xi 的边际分布函数. 如果对任意 n n n 个实数 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn, 有
F ( x 1 , x 2 , ⋯   , x n ) = ∏ i = 1 n F i ( x i ) , F\left(x_1, x_2, \cdots, x_n\right)=\prod_{i=1}^n F_i\left(x_i\right), F(x1,x2,,xn)=i=1nFi(xi),
则称 X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 相互独立.

离散随机变量场合, 如果对其任意 n n n 个取值 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn, 有
P ( X 1 = x 1 , X 2 = x 2 , ⋯   , X n = x n ) = ∏ i = 1 n P ( X i = x i ) , P\left(X_1=x_1, X_2=x_2, \cdots, X_n=x_n\right)=\prod_{i=1}^n P\left(X_i=x_i\right), P(X1=x1,X2=x2,,Xn=xn)=i=1nP(Xi=xi),
则称 X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 相互独立.
连续随机变量场合, 如果对任意 n n n 个实数 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn, 有
p ( x 1 , x 2 , ⋯   , x n ) = ∏ i = 1 n p i ( x i ) , p\left(x_1, x_2, \cdots, x_n\right)=\prod_{i=1}^n p_i\left(x_i\right), p(x1,x2,,xn)=i=1npi(xi),
则称 X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 相互独立.

3.3 多维随机变量函数的分布

3.3.1 多维离散随机变量函数的分布

( X 1 , X 2 , ⋯   , X n ) \left(X_1, X_2, \cdots, X_n\right) (X1,X2,,Xn) n n n 维离散随机变量, 则某一函数 Y = g ( X 1 , X 2 , ⋯   , X n ) Y=g\left(X_1, X_2, \cdots, X_n\right) Y=g(X1,X2,,Xn) 是 一维离散随机变量. 当 ( X 1 , X 2 , ⋯   , X n ) \left(X_1, X_2, \cdots, X_n\right) (X1,X2,,Xn) 所有可能取值较少时, 可将 Y Y Y 的取值一一 列出, 然后再合并整理就可得出结果.

3.3.2 最大值与最小值的分布

下面将以例子形式来讨论寻求最大值与最小值的概率分布的方法.

  • 例 3.3.4 (最大值分布)
    X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 是相互独立的 n n n 个随机变量, 若 Y = max ⁡ { X 1 , X 2 , ⋯   , X n } Y=\max \left\{X_1, X_2, \cdots, X_n\right\} Y=max{X1,X2,,Xn}. 试在以下情况下求 Y Y Y 的分布:
    (1) X i ∼ F i ( x ) , i = 1 , 2 , ⋯   , n X_i \sim F_i(x), i=1,2, \cdots, n XiFi(x),i=1,2,,n;
    (2) 诸 X i X_i Xi 同分布, 即 X i ∼ F ( x ) , i = 1 , 2 , ⋯   , n X_i \sim F(x), i=1,2, \cdots, n XiF(x),i=1,2,,n;
    (3) 诸 X i X_i Xi 为连续随机变量, 且诸 X i X_i Xi 同分布, 即 X i X_i Xi 的密度函数均为 p ( x ) , i = p(x), i= p(x),i= 1 , 2 , ⋯   , n 1,2, \cdots, n 1,2,,n;
    (4) X i ∼ Exp ⁡ ( λ ) , i = 1 , 2 , ⋯   , n X_i \sim \operatorname{Exp}(\lambda), i=1,2, \cdots, n XiExp(λ),i=1,2,,n.
    解 (1) Y = max ⁡ { X 1 , X 2 , ⋯   , X n } Y=\max \left\{X_1, X_2, \cdots, X_n\right\} Y=max{X1,X2,,Xn} 的分布函数为
    F Y ( y ) = P ( max ⁡ { X 1 , X 2 , ⋯   , X n } ⩽ y ) = P ( X 1 ⩽ y , X 2 ⩽ y , ⋯   , X n ⩽ y ) = P ( X 1 ⩽ y ) P ( X 2 ⩽ y ) ⋯ P ( X n ⩽ y ) = ∏ i = 1 n F i ( y ) . \begin{aligned} F_Y(y) &=P\left(\max \left\{X_1, X_2, \cdots, X_n\right\} \leqslant y\right)=P\left(X_1 \leqslant y, X_2 \leqslant y, \cdots, X_n \leqslant y\right) \\ &=P\left(X_1 \leqslant y\right) P\left(X_2 \leqslant y\right) \cdots P\left(X_n \leqslant y\right)=\prod_{i=1}^n F_i(y) . \end{aligned} FY(y)=P(max{X1,X2,,Xn}y)=P(X1y,X2y,,Xny)=P(X1y)P(X2y)P(Xny)=i=1nFi(y).
    (2) 将 X i X_i Xi 的共同分布函数 F ( x ) F(x) F(x) 代人上式得
    F Y ( y ) = [ F ( y ) ] n . F_Y(y)=[F(y)]^n. FY(y)=[F(y)]n.
    (3) Y Y Y 的分布函数仍为上式, 密度函数可对上式关于 y y y 求导得
    p Y ( y ) = F Y ′ ( y ) = n [ F ( y ) ] n − 1 p ( y ) . p_Y(y)=F_Y^{\prime}(y)=n[F(y)]^{n-1} p(y) . pY(y)=FY(y)=n[F(y)]n1p(y).
    (4) 将 Exp ⁡ ( λ ) \operatorname{Exp}(\lambda) Exp(λ) 的分布函数和密度函数代入得:
    F Y ( y ) = { 0 , y < 0 , ( 1 − e − λ y ) n , y ⩾ 0. p Y ( y ) = { 0 , y < 0 , n ( 1 − e − λ y ) n − 1 λ e − λ y , y ⩾ 0. \begin{aligned} &F_Y(y)= \begin{cases}0, & y<0, \\ \left(1-\mathrm{e}^{-\lambda y}\right)^n, & y \geqslant 0 .\end{cases} \\ &p_Y(y)= \begin{cases}0, & y<0, \\ n\left(1-\mathrm{e}^{-\lambda y}\right)^{n-1} \lambda \mathrm{e}^{-\lambda y}, & y \geqslant 0 .\end{cases} \end{aligned} FY(y)={0,(1eλy)n,y<0,y0.pY(y)={0,n(1eλy)n1λeλy,y<0,y0.

  • 例 3.3.5 (最小值分布)
    X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 是相互独立的 n n n 个随机变量,若 Y = min ⁡ { X 1 , X 2 , ⋯   , X n } Y=\min \left\{X_1, X_2, \cdots, X_n\right\} Y=min{X1,X2,,Xn}. 试在以下情况下求 Y Y Y 的分布 :
    (1) X i ∼ F i ( x ) , i = 1 , 2 , ⋯   , n X_i \sim F_i(x), i=1,2, \cdots, n XiFi(x),i=1,2,,n;
    (2) 诸 X i X_i Xi 同分布, 即 X i ∼ F ( x ) , i = 1 , 2 , ⋯   , n X_i \sim F(x), i=1,2, \cdots, n XiF(x),i=1,2,,n;
    (3) 诸 X i X_i Xi 为连续随机变量, 且诸 X i X_i Xi 同分布, 即 X i X_i Xi 的密度函数为 p ( x ) , i = 1 p(x), i=1 p(x),i=1, 2 , ⋯   , n 2, \cdots, n 2,,n;
    (4) X i ∼ Exp ⁡ ( λ ) , i = 1 , 2 , ⋯   , n X_i \sim \operatorname{Exp}(\lambda), i=1,2, \cdots, n XiExp(λ),i=1,2,,n.
    解 (1) Y = m i n { X 1 , X 2 , ⋯   , X n } Y=min\{X_1, X_2, \cdots, X_n\} Y=min{X1,X2,,Xn} 的分布函数为
    F Y ( y ) = P ( min ⁡ { X 1 , X 2 , ⋯   , X n } ⩽ y ) = 1 − P ( min ⁡ { X 1 , X 2 , ⋯   , X n } > y ) = 1 − P ( X 1 > y , X 2 > y , ⋯   , X n > y ) = 1 − P ( X 1 > y ) P ( X 2 > y ) ⋯ P ( X n > y ) = 1 − ∏ i = 1 n [ 1 − F i ( y ) ] . \begin{aligned} F_Y(y) &=P\left(\min \left\{X_1, X_2, \cdots, X_n\right\} \leqslant y\right) \\ &=1-P\left(\min \left\{X_1, X_2, \cdots, X_n\right\}>y\right) \\ &=1-P\left(X_1>y, X_2>y, \cdots, X_n>y\right) \\ &=1-P\left(X_1>y\right) P\left(X_2>y\right) \cdots P\left(X_n>y\right) \\ &=1-\prod_{i=1}^n\left[1-F_i(y)\right] . \end{aligned} FY(y)=P(min{X1,X2,,Xn}y)=1P(min{X1,X2,,Xn}>y)=1P(X1>y,X2>y,,Xn>y)=1P(X1>y)P(X2>y)P(Xn>y)=1i=1n[1Fi(y)].
    (2) 将 X i X_i Xi 的共同分布函数 F ( x ) F(x) F(x) 代人上式得
    F Y ( y ) = 1 − [ 1 − F ( y ) ] n . \left.F_Y(y)=1 - [1-F(y)\right]^n . FY(y)=1[1F(y)]n.
    (3) Y Y Y 的分布函数仍为上式, 密度函数可对上式关于 y y y 求导得
    p Y ( y ) = F Y ′ ( y ) = n [ 1 − F ( y ) ] n − 1 p ( y ) . p_Y(y)=F_Y^{\prime}(y)=n[1-F(y)]^{n-1} p(y) . pY(y)=FY(y)=n[1F(y)]n1p(y).
    (4) 将 Exp ⁡ ( λ ) \operatorname{Exp}(\lambda) Exp(λ) 的分布函数和密度函数代入得
    F Y ( y ) = { 0 , y < 0 , 1 − e − n λ y , y ⩾ 0. p Y ( y ) = { 0 , y < 0 , n λ e − n λ y , y ⩾ 0. \begin{gathered} F_Y(y)= \begin{cases}0, & y<0, \\ 1-\mathrm{e}^{-n\lambda y}, & y \geqslant 0 .\end{cases} \\ p_Y(y)= \begin{cases}0, & y<0, \\ n \lambda \mathrm{e}^{-n \lambda y}, & y \geqslant 0 .\end{cases} \end{gathered} FY(y)={0,1enλy,y<0,y0.pY(y)={0,nλenλy,y<0,y0.

3.3.3 连续场合的卷积公式

定理 3.3.1 X X X Y Y Y 是两个相互独立的连续随机变量, 其密度函数分别 为 p X ( x ) p_X(x) pX(x) p Y ( y ) p_Y(y) pY(y), 则其和 Z = X + Y Z=X+Y Z=X+Y 的密度函数为
p Z ( z ) = ∫ − ∞ ∞ p X ( z − y ) p Y ( y ) d y = ∫ − ∞ ∞ p X ( x ) p Y ( z − x ) d x . p_Z(z)=\int_{-\infty}^{\infty} p_X(z-y) p_Y(y) \mathrm{d} y=\int_{-\infty}^{\infty}p_X(x) p_Y(z-x) \mathrm{d} x . pZ(z)=pX(zy)pY(y)dy=pX(x)pY(zx)dx.

3.3.4 变量变换法

一、变量变换法
设二维随机变量 ( X , Y ) (X, Y) (X,Y) 的联合密度函数为 p ( x , y ) p(x, y) p(x,y), 如果函数
{ u = g 1 ( x , y ) , v = g 2 ( x , y ) \left\{\begin{array}{l} u=g_1(x, y), \\ v=g_2(x, y) \end{array}\right. {u=g1(x,y),v=g2(x,y)
有连续偏导数, 且存在唯一的反函数
{ x = x ( u , v ) , y = y ( u , v ) , \left\{\begin{array}{l} x=x(u, v), \\ y=y(u, v), \end{array}\right. {x=x(u,v),y=y(u,v),
其变换的雅可比行列式
J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ y ∂ u ∂ x ∂ v ∂ y ∂ v ∣ = ( ∂ ( u , v ) ∂ ( x , y ) ) − 1 = ( ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ ) − 1 ≠ 0. J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{array}\right|=\left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1}=(| \begin{array}{ll} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{array}|)^{-1} \neq 0 . J=(u,v)(x,y)=uxvxuyvy=((x,y)(u,v))1=(xuxvyuyv)1=0.

{ U = g 1 ( X , Y ) , V = g 2 ( X , Y ) , \left\{\begin{array}{l} U=g_1(X, Y), \\ V=g_2(X, Y), \end{array}\right. {U=g1(X,Y),V=g2(X,Y),
( U , V ) (U, V) (U,V) 的联合密度函数为
p ( u , v ) = p ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ . p(u, v)=p(x(u, v), y(u, v))|J| . p(u,v)=p(x(u,v),y(u,v))J.

二、增补变量法
增补变量法实质上是变换法的一种应用: 为了求出二维连续随机变量 ( X (X (X, Y ) Y) Y) 的函数 U = g ( X , Y ) U=g(X, Y) U=g(X,Y) 的密度函数, 增补一个新的随机变量 V = h ( X , Y ) V=h(X, Y) V=h(X,Y), 一般令 V V V = X =X =X V = Y V=Y V=Y. 先用变换法求出 ( U , V ) (U, V) (U,V) 的联合密度函数 p ( u , v ) p(u, v) p(u,v), 再对 p ( u , v ) p(u, v) p(u,v) 关于 v v v积分, 从而得出关于 U U U 的边际密度函数.
下面我们以例子形式, 给出两个随机变量的积与商的公式.

  • 例 3.3.11(积的公式)
  • 设随机变量 X X X Y Y Y 相互独立, 其密度函数分别为 p X ( x ) p_X(x) pX(x) p Y ( y ) p_Y(y) pY(y). 则 U = X Y U=X Y U=XY 的密度函数为
    p U ( u ) = ∫ − ∞ ∞ p X ( u v ) p Y ( v ) 1 ∣ v ∣ d v . p_U(u)=\int_{-\infty}^{\infty} p_X\left(\frac{u}{v}\right) p_Y(v) \frac{1}{|v|} \mathrm{d} v . pU(u)=pX(vu)pY(v)v1dv.
    解 记 V = Y V=Y V=Y, 则 { u = x y , v = y \left\{\begin{array}{l}u=x y, \\ v=y\end{array}\right. {u=xy,v=y 的反函数为 { x = u v , y = v , \left\{\begin{array}{l}x=\frac{u}{v}, \\ y=v,\end{array}\right. {x=vu,y=v, 雅可比行列式为
    J = ∣ 1 v − u v 2 0 1 ∣ = 1 v , J=\left|\begin{array}{cc} \frac{1}{v} & -\frac{u}{v^2} \\ 0 & 1 \end{array}\right|=\frac{1}{v}, J=v10v2u1=v1,
    所以 ( U , V ) (U, V) (U,V) 的联合密度函数为
    p ( u , v ) = p X ( u v ) ⋅ p Y ( v ) ∣ J ∣ = p X ( u v ) p Y ( v ) 1 ∣ v ∣ . p(u, v)=p_X\left(\frac{u}{v}\right) \cdot p_Y(v)|J|=p_X\left(\frac{u}{v}\right) p_Y(v) \frac{1}{|v|} . p(u,v)=pX(vu)pY(v)J=pX(vu)pY(v)v1.
    p ( u , v ) p(u, v) p(u,v) 关于 v v v 积分, 就可得 U = X Y U=X Y U=XY 的密度函数.
  • 例 3.3.12(商的公式)
  • 设随机变量 X X X Y Y Y 相互独立, 其密度函数分别为 p X ( x ) p_X(x) pX(x) p Y ( y ) p_Y(y) pY(y). 则 U = X / Y U=X / Y U=X/Y 的密度函数为
    p v ( u ) = ∫ − ∞ ∞ p x ( u v ) p y ( v ) ∣ v ∣ d v . p_v(u)=\int_{-\infty}^{\infty} p_x(u v) p_y(v)|v| \mathrm{d} v . pv(u)=px(uv)py(v)vdv.
    解 记 V = Y V=Y V=Y, 则 { u = x / y , v = y \left\{\begin{array}{l}u=x / y, \\ v=y\end{array}\right. {u=x/y,v=y 的反函数为 { x = u v , y = v , \left\{\begin{array}{l}x=u v, \\ y=v,\end{array}\right. {x=uv,y=v, 雅可比行列式为
    J = ∣ v u 0 1 ∣ = v , J=\left|\begin{array}{ll} v & u \\ 0 & 1 \end{array}\right|=v, J=v0u1=v,
    所以 ( U , V ) (U, V) (U,V) 的联合密度函数为
    p ( u , v ) = p X ( u v ) ⋅ p Y ( v ) ∣ J ∣ = p ( u v , v ) ∣ v ∣ . p(u, v)=p_X(u v) \cdot p_Y(v)|J|=p(u v, v)|v| . p(u,v)=pX(uv)pY(v)J=p(uv,v)v.
    p ( u , v ) p(u, v) p(u,v) 关于 v v v 积分, 就可得 U = X / Y U=X / Y U=X/Y 的密度函数。

3.4 多维随机变量的特征数

3.4.1 多维随机变量函数的数学期望

定理 3.4.1 若二维随机变量 ( X , Y ) (X, Y) (X,Y) 的分布用联合分布列 P ( X = x i , Y = y j ) P\left(X=x_i, Y=y_j\right) P(X=xi,Y=yj) 或用联合密度函数 p ( x , y ) p(x, y) p(x,y) 表示, 则 Z = g ( X , Y ) Z=g(X, Y) Z=g(X,Y) 的数学期望为
E ( Z ) = { ∑ i ∑ j g ( x i , y j ) P ( X = x i , Y = y j ) ,  在离散场合,  ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x , y ) p ( x , y ) d x   d y ,  在连续场合.  E(Z)= \begin{cases}\sum_i \sum_j g\left(x_i, y_j\right) P\left(X=x_i, Y=y_j\right), & \text { 在离散场合, } \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) p(x, y) \mathrm{d} x \mathrm{~d} y, & \text { 在连续场合. }\end{cases} E(Z)={ijg(xi,yj)P(X=xi,Y=yj),g(x,y)p(x,y)dx dy, 在离散场合 在连续场合

还要指出,在连续场合 (离散场合也类似)有:

  • g ( X , Y ) = X g(X, Y)=X g(X,Y)=X 时, 可得 X X X 的数学期望为
    E ( X ) = ∫ − ∞ ∞ ∫ − ∞ ∞ x p ( x , y ) d x d y = ∫ − ∞ ∞ x p X ( x ) d x . E(X)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x p(x, y) \mathrm{d} x \mathrm{d} y=\int_{-\infty}^{\infty} x p_X(x) \mathrm{d} x . E(X)=xp(x,y)dxdy=xpX(x)dx.
  • g ( X , Y ) = ( X − E ( X ) ) 2 g(X, Y)=(X-E(X))^2 g(X,Y)=(XE(X))2 时, 可得 X X X 的方差为
    Var ⁡ ( X ) = E ( X − E ( X ) ) 2 = ∫ − ∞ ∞ ∫ − ∞ ∞ ( x − E ( X ) ) 2 p ( x , y ) d x d y = ∫ − ∞ ∞ ( x − E ( X ) ) 2 p x ( x ) d x . \begin{aligned} \operatorname{Var}(X) &=E(X-E(X))^2=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-E(X))^2 p(x, y) \mathrm{d} x \mathrm{d} y \\ &=\int_{-\infty}^{\infty}(x-E(X))^2 p_x(x) \mathrm{d} x . \end{aligned} Var(X)=E(XE(X))2=(xE(X))2p(x,y)dxdy=(xE(X))2px(x)dx.
    类似地可给出 Y Y Y 的数学期望与方差的公式.

3.4.2 数学期望与方差的运算性质

性质 3.4.1
( X , Y ) (X, Y) (X,Y) 是二维随机变量, 则有
E ( X + Y ) = E ( X ) + E ( Y ) . E(X+Y)=E(X)+E(Y) . E(X+Y)=E(X)+E(Y).
这个性质还可推广到 n n n 维随机变量场合, 即
E ( X 1 + X 2 + ⋯ + X n ) = E ( X 1 ) + E ( X 2 ) + ⋯ + E ( X n ) . E\left(X_1+X_2+\cdots+X_n\right)=E\left(X_1\right)+E\left(X_2\right)+\cdots+E\left(X_n\right) . E(X1+X2++Xn)=E(X1)+E(X2)++E(Xn).
性质 3.4.2
若随机变量 X X X Y Y Y 相互独立, 则有
E ( X Y ) = E ( X ) E ( Y ) . E(X Y)=E(X) E(Y). E(XY)=E(X)E(Y).
在独立场合, 随机变量乘积的数学期望等于数学期望的乘积, 这个性质还可推广到 n n n 维随机变量场合, 即若 X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 相互独立, 则有
E ( X 1 X 2 ⋯ X n ) = E ( X 1 ) E ( X 2 ) ⋯ E ( X n ) . E\left(X_1 X_2 \cdots X_n\right)=E\left(X_1\right) E\left(X_2\right) \cdots E\left(X_n\right) . E(X1X2Xn)=E(X1)E(X2)E(Xn).
性质 3.4.3
若随机变量 X X X Y Y Y 相互独立, 则有
Var ⁡ ( X ± Y ) = Var ⁡ ( X ) + Var ⁡ ( Y ) . \operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) . Var(X±Y)=Var(X)+Var(Y).

3.4.3 协方差

定义 3.4.1
( X , Y ) (X, Y) (X,Y) 是一个二维随机变量, 若 E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] E[(X-E(X))(Y-E(Y))] E[(XE(X))(YE(Y))] 存在, 则称此数学期望为 X X X Y Y Y 的协方差, 或称为 X X X Y Y Y 的相关 (中心) 矩, 并记为
Cov ⁡ ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] . \operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))] . Cov(X,Y)=E[(XE(X))(YE(Y))].
特别有 Cov ⁡ ( X , X ) = Var ⁡ ( X ) \operatorname{Cov}(X, X)=\operatorname{Var}(X) Cov(X,X)=Var(X).

  • Cov ⁡ ( X , Y ) > 0 \operatorname{Cov}(X, Y)>0 Cov(X,Y)>0 时, 称 X X X Y Y Y 正相关, 这时两个偏差 ( X − E ( X ) ) (X-E(X)) (XE(X)) ( Y − (Y- (Y E ( Y ) ) E(Y)) E(Y)) 有同时增加或同时减少的倾向.
  • Cov ⁡ ( X , Y ) < 0 \operatorname{Cov}(X, Y)<0 Cov(X,Y)<0 时, 称 X X X Y Y Y 负相关, 这时有 X X X 增加而 Y Y Y 减少的倾向, 或 有 Y Y Y 增加而 X X X 椷少的倾向.
  • Cov ⁡ ( X , Y ) = 0 \operatorname{Cov}(X, Y)=0 Cov(X,Y)=0 时, 称 X X X Y Y Y 不相关. 这时可能由两类情况导致:一类是 X X X Y Y Y 的取值毫无关联 (见性质 3.4.5), 另一类是 X X X Y Y Y 间存有某种非线性关系.

性质 3. 4. 4
Cov ⁡ ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) Cov(X,Y)=E(XY)E(X)E(Y).

下面的性质表明: “不相关”是比“独立”更弱的一个概念.
性质 3.4.5
若随机变量 X X X Y Y Y 相互独立, 则 Cov ⁡ ( X , Y ) = 0 \operatorname{Cov}(X, Y)=0 Cov(X,Y)=0, 反之不然.

性质 3.4.6
对任意二维随机变量 ( X , Y ) (X, Y) (X,Y), 有
Var ⁡ ( X ± Y ) = Var ⁡ ( X ) + Var ⁡ ( Y ) ± 2 Cov ⁡ ( X , Y ) . \operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \pm 2 \operatorname{Cov}(X, Y) . Var(X±Y)=Var(X)+Var(Y)±2Cov(X,Y).
X X X Y Y Y 不相关. 则 Var ⁡ ( X ± Y ) = Var ⁡ ( X ) + Var ⁡ ( Y ) \operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) Var(X±Y)=Var(X)+Var(Y)

以上性质 3.4.6 还可以推广到更多个随机变量场合, 即对任意 n n n 个随机变 量 X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn, 有
Var ⁡ ( ∑ i = 1 n X i ) = ∑ i = 1 n Var ⁡ ( X i ) + 2 ∑ i = 1 n ∑ j = 1 i − 1 Cov ⁡ ( X i , X j ) . \operatorname{Var}\left(\sum_{i=1}^n X_i\right)=\sum_{i=1}^n \operatorname{Var}\left(X_i\right)+2 \sum_{i=1}^n \sum_{j=1}^{i-1} \operatorname{Cov}\left(X_i, X_j\right) . Var(i=1nXi)=i=1nVar(Xi)+2i=1nj=1i1Cov(Xi,Xj).

性质 3.4.7
协方差 Cov ⁡ ( X , Y ) \operatorname{Cov}(X, Y) Cov(X,Y) 的计算与 X , Y X, Y X,Y 的次序无关, 即
Cov ⁡ ( X , Y ) = Cov ⁡ ( Y , X ) . \operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X) . Cov(X,Y)=Cov(Y,X).

性质 3.4.8
任意随机变量 X X X 与常数 a a a 的协方差为零, 即
Cov ⁡ ( X , a ) = 0. \operatorname{Cov}(X, a)=0 . Cov(X,a)=0.

性质 3.4.9
对任意常数 a , b a, b a,b, 有
Cov ⁡ ( a X , b Y ) = a b Cov ⁡ ( X , Y ) . \operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y) . Cov(aX,bY)=abCov(X,Y).

性质 3.4.10
X , Y , Z X, Y, Z X,Y,Z 是任意三个随机变量, 则
Cov ⁡ ( X + Y , Z ) = Cov ⁡ ( X , Z ) + Cov ⁡ ( Y , Z ) . \operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z) . Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z).

3.4.4 相关系数

定义 3.4.2
( X , Y ) (X, Y) (X,Y) 是一个二维随机变量, 且 Var ⁡ ( X ) = σ X 2 > 0 , Var ⁡ ( Y ) = \operatorname{Var}(X)=\sigma_X^2>0, \operatorname{Var}(Y)= Var(X)=σX2>0,Var(Y)= σ Y 2 > 0 \sigma_Y^2>0 σY2>0. 则称
Corr ⁡ ( X , Y ) = Cov ⁡ ( X , Y ) Var ⁡ ( X ) Var ⁡ ( Y ) = Cov ⁡ ( X , Y ) σ X σ Y \operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} Corr(X,Y)=Var(X) Var(Y) Cov(X,Y)=σXσYCov(X,Y)
X X X Y Y Y 的(线性)相关系数.

相关系数的另一个解释是: 它是相应标准化变量的协方差. 若记 X X X Y Y Y 的数学期望分别为 μ x , μ Y \mu_x, \mu_Y μx,μY,其标准化变量为
X ∗ = X − μ X σ X , Y ∗ = Y − μ Y σ Y , X^*=\frac{X-\mu_X}{\sigma_X}, \quad Y^*=\frac{Y-\mu_Y}{\sigma_Y}, X=σXXμX,Y=σYYμY,
则有
Cov ⁡ ( X ∗ , Y ∗ ) = Cov ⁡ ( X − μ X σ X , Y − μ Y σ Y ) = Cov ⁡ ( X , Y ) σ X σ Y = Corr ⁡ ( X , Y ) . \operatorname{Cov}\left(X^*, Y^*\right)=\operatorname{Cov}\left(\frac{X-\mu_X}{\sigma_X}, \frac{Y-\mu_Y}{\sigma_Y}\right)=\frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}=\operatorname{Corr}(X, Y) . Cov(X,Y)=Cov(σXXμX,σYYμY)=σXσYCov(X,Y)=Corr(X,Y).

引理 3.4.1 施瓦茨 (Schwarz) 不等式) 对任意二维随机变量 ( X , Y ) (X, Y) (X,Y), 若 X X X Y Y Y 的方差都存在, 且记 σ X 2 = Var ⁡ ( X ) , σ Y 2 = Var ⁡ ( Y ) \sigma_X^2=\operatorname{Var}(X), \sigma_Y^2=\operatorname{Var}(Y) σX2=Var(X),σY2=Var(Y), 则有
[ Cov ⁡ ( X , Y ) ] 2 ⩽ σ X 2 σ γ 2 .  [\operatorname{Cov}(X, Y)]^2 \leqslant \sigma_X^2 \sigma_\gamma^2 \text {. } [Cov(X,Y)]2σX2σγ2.

性质 3. 4.11
− 1 ⩽ Corr ⁡ ( X , Y ) ⩽ 1 -1 \leqslant \operatorname{Corr}(X, Y) \leqslant 1 1Corr(X,Y)1, 或 ∣ Corr ⁡ ( X , Y ) ∣ ⩽ 1 |\operatorname{Corr}(X, Y)| \leqslant 1 Corr(X,Y)1.

性质 3. 4.12
Corr ⁡ ( X , Y ) = ± 1 \operatorname{Corr}(X, Y)=\pm 1 Corr(X,Y)=±1 的充要条件是 X X X Y Y Y 间几乎处处有线性关系, 即存在 a ( ≠ 0 ) a(\neq 0) a(=0) b b b, 使得
P ( Y = a X + b ) = 1. P(Y=a X+b)=1 . P(Y=aX+b)=1.
其中当 Corr ⁡ ( X , Y ) = 1 \operatorname{Corr}(X, Y)=1 Corr(X,Y)=1 时, 有 a > 0 a>0 a>0; 当 Corr ⁡ ( X , Y ) = − 1 \operatorname{Corr}(X, Y)=-1 Corr(X,Y)=1 时, 有 a < 0 a<0 a<0.

性质 3.4.13 在二维正态分布 N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) N\left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho\right) N(μ1,μ2,σ12,σ22,ρ) 场合, 不相关与独立是等价的.

3.4.5 随机向量的数学期望向量与协方差矩阵

以下我们用矩阵形式给出 n n n 维随机变量的数学期望与方差.
定义 3.4.3
n n n 维随机向量为 X = ( X 1 , X 2 , ⋯   , X n ) ′ \boldsymbol{X}=\left(X_1, X_2, \cdots, X_n\right)^{\prime} X=(X1,X2,,Xn), 若其每个分量的数学期望都存在,则称
E ( X ) = ( E ( X 1 ) , E ( X 2 ) , ⋯   , E ( X n ) ) ′ E(X)=\left(E\left(X_1\right), E\left(X_2\right), \cdots, E\left(X_n\right)\right)^{\prime} E(X)=(E(X1),E(X2),,E(Xn))
n n n 维随机向量 X X X 的数学期望向量, 简称为 X X X 的数学期望, 而称
E [ ( X − E ( X ) ) ( X − E ( X ) ) ′ ] = ( Var ⁡ ( X 1 ) Cov ⁡ ( X 1 , X 2 ) ⋯ Cov ⁡ ( X 1 , X n ) Cov ⁡ ( X 2 , X 1 ) Var ⁡ ( X 2 ) ⋯ Cov ⁡ ( X 2 , X n ) ⋮ ⋮ ⋮ Cov ⁡ ( X n , X 1 ) Cov ⁡ ( X n , X 2 ) ⋯ Var ⁡ ( X n ) ) \begin{aligned} & E\left[(\boldsymbol{X}-E(\boldsymbol{X}))(\boldsymbol{X}-\boldsymbol{E}(\boldsymbol{X}))^{\prime}\right] \\ =&\left(\begin{array}{cccc} \operatorname{Var}\left(X_1\right) & \operatorname{Cov}\left(X_1, X_2\right) & \cdots & \operatorname{Cov}\left(X_1, X_n\right) \\ \operatorname{Cov}\left(X_2, X_1\right) & \operatorname{Var}\left(X_2\right) & \cdots & \operatorname{Cov}\left(X_2, X_n\right) \\ \vdots & \vdots & & \vdots \\ \operatorname{Cov}\left(X_n, X_1\right) & \operatorname{Cov}\left(X_n, X_2\right) & \cdots & \operatorname{Var}\left(X_n\right) \end{array}\right) \end{aligned} =E[(XE(X))(XE(X))]Var(X1)Cov(X2,X1)Cov(Xn,X1)Cov(X1,X2)Var(X2)Cov(Xn,X2)Cov(X1,Xn)Cov(X2,Xn)Var(Xn)
为该随机向量的方差-协方差矩阵,简称协方差阵,记为 Cov ⁡ ( X ) \operatorname{Cov}(\boldsymbol{X}) Cov(X).

定理 3.4.2 n n n 维随机向量的协方差矩阵 Cov ⁡ ( X ) = ( Cov ⁡ ( X i , X j ) ) n × n \operatorname{Cov}(\boldsymbol{X})=\left(\operatorname{Cov}\left(X_i, X_j\right)\right)_{n \times n} Cov(X)=(Cov(Xi,Xj))n×n 是一个对称的非负定矩阵.

3.5 条件分布与条件期望

3.5.1 条件分布

一、离散随机变量的条件分布
设二维离散随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布列为
p i j = P ( X = x i , Y = y j ) , i = 1 , 2 , ⋯   , j = 1 , 2 , ⋯   . p_{i j}=P\left(X=x_i, Y=y_j\right), \quad i=1,2, \cdots, \quad j=1,2, \cdots . pij=P(X=xi,Y=yj),i=1,2,,j=1,2,.
定义 3.5.1
对一切使 P ( Y = y j ) = p ⋅ j = ∑ i = 1 ∞ p i j > 0 P\left(Y=y_j\right)=p_{ \cdot j}=\sum_{i=1}^{\infty} p_{i j}>0 P(Y=yj)=pj=i=1pij>0 y j y_j yj, 称
p i ∣ j = P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) = p i j p ⋅ j , i = 1 , 2 , ⋯ p_{i|j}=P\left(X=x_i \mid Y=y_j\right)=\frac{P\left(X=x_i, Y=y_j\right)}{P\left(Y=y_j\right)}=\frac{p_{i j}}{p_{\cdot j }}, \quad i=1,2, \cdots pij=P(X=xiY=yj)=P(Y=yj)P(X=xi,Y=yj)=pjpij,i=1,2,
为给定 Y = y j Y=y_j Y=yj 条件下 X X X 的条件分布列.
Y同理。
定义 3.5.2
给定 Y = y j Y=y_j Y=yj 条件下 X X X 的条件分布函数为
F ( x ∣ y j ) = ∑ x i ⩽ x P ( X = x i ∣ Y = y j ) = ∑ x i ⩽ x P i ∣ j , F\left(x \mid y_j\right)=\sum_{x_i \leqslant x} P\left(X=x_i \mid Y=y_j\right)=\sum_{x_i \leqslant x} P_{i| j}, F(xyj)=xixP(X=xiY=yj)=xixPij,
Y同理。
二、连续随机变量的条件分布
定义 3.5.3
对一切使 p Y ( y ) > 0 p_Y(y)>0 pY(y)>0 y y y, 给定 Y = y Y=y Y=y 条件下 X X X 的条件分布函数和条件密度函数分别为
F ( x ∣ y ) = ∫ − ∞ x p ( u , y ) p Y ( y ) d u , p ( x ∣ y ) = p ( x , y ) p Y ( y ) . \begin{aligned} &F(x \mid y)=\int_{-\infty}^x \frac{p(u, y)}{p_Y(y)} \mathrm{d} u, \\ &p(x \mid y)=\frac{p(x, y)}{p_Y(y)} . \end{aligned} F(xy)=xpY(y)p(u,y)du,p(xy)=pY(y)p(x,y).
Y同理。

三、连续场合的全概率公式和贝叶斯公式
p ( x , y ) = p X ( x ) p ( y ∣ x ) , \begin{aligned} &p(x, y)=p_X(x) p(y \mid x), \\ \end{aligned} p(x,y)=pX(x)p(yx),
再对 p ( x , y ) p(x, y) p(x,y) 求边际密度函数, 就得全概率公式的密度函数形式:
p Y ( y ) = ∫ − ∞ ∞ p X ( x ) p ( y ∣ x ) d x , \begin{aligned} &p_Y(y)=\int_{-\infty}^{\infty} p_X(x) p(y \mid x) \mathrm{d} x, \\ \end{aligned} pY(y)=pX(x)p(yx)dx,
就得贝叶斯公式的密度函数形式:
p ( x ∣ y ) = p X ( x ) p ( y ∣ x ) ∫ − ∞ ∞ p X ( x ) p ( y ∣ x ) d x 。 p(x \mid y)=\frac{p_X(x) p(y \mid x)}{\int_{-\infty}^{\infty} p_X(x) p(y \mid x) \mathrm{d} x}。 p(xy)=pX(x)p(yx)dxpX(x)p(yx)

3.5.2 条件数学期望

定义 3.5.4
条件分布的数学期望(若存在)称为条件期望,其定义如下:
E ( X ∣ Y = y ) = { ∑ i x i P ( X = x i ∣ Y = y ) , ( X , Y )  为二维离散随机变量,  ∫ − ∞ ∞ x p ( x ∣ y ) d x , ( X , Y )  为二维连续随机变量.  E(X \mid Y=y)=\left\{\begin{array}{cl}\sum_i x_i P\left(X=x_i \mid Y=y\right), & (X, Y) \text { 为二维离散随机变量, } \\ \int_{-\infty}^{\infty} x p(x \mid y) \mathrm{d} x, & (X, Y) \text { 为二维连续随机变量. }\end{array}\right. E(XY=y)={ixiP(X=xiY=y),xp(xy)dx,(X,Y) 为二维离散随机变量(X,Y) 为二维连续随机变量
因为条件期望是条件分布的数学期望, 所以它具有数学期望的一切性质, 例如
E ( a 1 X 1 + a 2 X 2 ∣ Y = y ) = a 1 E ( X 1 ∣ Y = y ) + a 2 E ( X 2 ∣ Y = y ) . E\left(a_1 X_1+a_2 X_2 \mid Y=y\right)=a_1 E\left(X_1 \mid Y=y\right)+a_2 E\left(X_2 \mid Y=y\right) . E(a1X1+a2X2Y=y)=a1E(X1Y=y)+a2E(X2Y=y).
其他性质在此不一一列举.

定理 3.5.1 (重期望公式) ( X , Y ) (X, Y) (X,Y) 是二维随机变量, 且 E ( X ) E(X) E(X) 存在, 则
E ( X ) = E ( E ( X ∣ Y ) ) . E(X)=E(E(X \mid Y)) . E(X)=E(E(XY)).

重期望公式的具体使用如下:
(1) 如果 Y Y Y 是一个离散随机变量, 则
E ( X ) = ∑ j E ( X ∣ Y = y j ) P ( Y = y j ) . E(X)=\sum_j E\left(X \mid Y=y_j\right) P\left(Y=y_j\right) . E(X)=jE(XY=yj)P(Y=yj).
(2) 如果 Y Y Y 是一个连续随机变量,则
E ( X ) = ∫ − ∞ ∞ E ( X ∣ Y = y ) p Y ( y ) d y . E(X)=\int_{-\infty}^{\infty} E(X \mid Y=y) p_Y(y) \mathrm{d} y . E(X)=E(XY=y)pY(y)dy.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值