在公式 y=f(wx+b)中,w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b为偏置项。f是激活函数,有sigmoid、tanh、relu等。x是输入的数据。数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值。
在这里,我们仍用之前训练好的lenet_iter_9380.caffemodel进行试验,在Spyder编译器下观察如下代码:
import caffe
import numpy as np
root='D:/caffe/caffe-master/caffe-master/mnist/' #根目录
deploy=root + 'mnist/deploy.prototxt' #deploy文件
caffe_model=root + 'mnist/lenet_iter_9380.caffemodel' #训练好的 caffemodel
net = caffe.Net(deploy,caffe_model,caffe.TEST) #加载model和network
[(k,v[0].data.shape) for k,v in net.params.items()] #查看各层参数规模
w1=net.params['Convolution1'][0].data #提取参数w
b1=net.params['Convolution1'][1].data #提取参数b
net.forward() #运行测试
[(k,v.data.shape) for k,v in net.blobs.items()] #查看各层数据规模
fea=net.blobs['InnerProduct1'].data #提取某层数据(特征)
代码解读:
(1)
net = caffe.Net(deploy,caffe_model,caffe.TEST) #加载model和network
把所有的参数和数据都加载到一个net变量里面,其中:
net.params: 保存各层的参数值(w和b)
net.blobs: 保存各层的数据值
(2)要查看各层的参数值,需通过以下命令:
[(k,v[0].data.shape) for k,v in net.params.items()] #查看各层参数规模
其中,k表示层的名称,v[0].data就是各层的W值,而v[1].data是各层的b值。注意:并不是所有的层都有参数,只有卷积层和全连接层才有。
(3)提取参数w和b
下列代码为提取卷积层“Convolution1”的参数:
w1=net.params['Convolution1'][0].data #提取参数w
b1=net.params['Convolution1'][1].data #提取参数b
由此即可得到参数如下:
(4)查看数据
net里面刚开始是没有数据的,若要查看数据,需要先运行net.forward() :
net.forward() #运行测试
[(k,v.data.shape) for k,v in net.blobs.items()] #查看各层数据规模
实际上数据刚输入的时候,我们叫图片数据,卷积之后我们就称其为特征了。
运行后我们就可以提取第一个全连接层的数据:
fea=net.blobs['InnerProduct1'].data #提取某层数据(特征)
运用该程序,我们可以随时查看网络中的各种参数及特征数据。