Paper Reading: WGAN & WGAN-gp

Paper Reading Note

URL:

  1. Towards Principled Methods for Training Generative Adversarial Networks
  2. Wasserstein GAN

TL;DR

17年初提出的针对于原始GAN问题本质上的改进,现在已经成为主流GAN的base-model。
作者花了两篇文章的篇幅,从证明到改进论述了原始GAN的两个重要问题:

  1. 【梯度消失】,即不需要再小心地平衡生成器和判别器之间的gap。
  2. 【模型崩塌】,原始模型优化KL散度导致的不对称会让生成器倾向于生成单一而安全的样本而放弃多样性。

Algorithm

作者在这里给出了详细的论述:


原始GAN的损失函数:
在这里插入图片描述
实际上这种损失函数经过变形等价为:
在这里插入图片描述
实际上就是原始数据的分布和生成数据的分布的js散度。而由于在大部分情况下二者在高维空间里几乎不可能有不可忽略的重叠,导致js散度的梯度几乎都等于常数。这也是原始的GAN在训练过程中常常会出现梯度消失最本质的问题。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值