[LeetCode]497. 非重叠矩形中的随机点

75 篇文章 0 订阅

题目


497. 非重叠矩形中的随机点
给定一个由非重叠的轴对齐矩形的数组 rects ,其中 rects[i] = [ai, bi, xi, yi] 表示 (ai, bi) 是第 i 个矩形的左下角点,(xi, yi) 是第 i 个矩形的右上角角点。设计一个算法来随机挑选一个被某一矩形覆盖的整数点。矩形周长上的点也算做是被矩形覆盖。所有满足要求的点必须等概率被返回。

在一个给定的矩形覆盖的空间内任何整数点都有可能被返回。

请注意 ,整数点是具有整数坐标的点。

实现 Solution:

Solution(int[][] rects) 用给定的矩形数组 rects 初始化对象。
int[] pick() 返回一个随机的整数点 [u, v] 在给定的矩形所覆盖的空间内。
 

示例 1:



输入: 
["Solution","pick","pick","pick","pick","pick"]
[[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]]
输出: 
[null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]

解释:
Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]);
solution.pick(); // 返回 [1, -2]
solution.pick(); // 返回 [1, -1]
solution.pick(); // 返回 [-1, -2]
solution.pick(); // 返回 [-2, -2]
solution.pick(); // 返回 [0, 0]
 

提示:

1 <= rects.length <= 100
rects[i].length == 4
-109 <= ai < xi <= 109
-109 <= bi < yi <= 109
xi - ai <= 2000
yi - bi <= 2000
所有的矩形不重叠。
pick 最多被调用 104 次。

方法1:二分+前缀和

 class Solution {
    Random random = new Random();
    int[][] rects;
    List<Integer> arr;//标记每个rect的开始的位置
    int n;

    public Solution(int[][] _rects) {
        rects = _rects;
        arr = new ArrayList<>();
        arr.add(0);
        for (int[] p : rects) {
            int a = p[0], b = p[1], x = p[2], y = p[3];
            //上个位置+当前rect中整数点的个数
            arr.add(arr.get(arr.size() - 1) + (x - a + 1) * (y - b + 1));
        }
        n = arr.size();
    }

    public int[] pick() {
        int k = random.nextInt(arr.get(n - 1));//获取[0...n-1]之间的一个随机数
        //k+1的写法 如果没有 +1 上面的 k可能会是0 这样返回的rectIndex=-1 会越界
        int rectIndex = binarySearch(arr, k + 1) - 1;//获取k应该在的rects中的索引位置
        k -= arr.get(rectIndex);//将k变成相对量,当前rectIndex上的增量
        int[] p = rects[rectIndex];//rectIndex的信息
        int a = p[0], b = p[1], x = p[2], y = p[3];
        int col = y - b + 1;//列上有多少个点,算上边框
        int delta_a = k / col;//在a这个点的增量
        int delta_b = k - col * delta_a;//剩下的是b的增量
        return new int[]{a + delta_a, b + delta_b};//在[a,b]点上增加增量返回
    }


    public int binarySearch(List<Integer> arr, int target) {
        int lo = 0, hi = n - 1;
        while (lo <= hi) {
            int mid = lo + (hi - lo) / 2;//下取整
            if (arr.get(mid) == target) return mid;
            else if (arr.get(mid) > target) hi = mid - 1;
            else lo = mid + 1;
        }
        return lo;//返回是 lo = hi+1
    }
}

方法2:蓄水池抽样

        class Solution {
            int[][] rects;
            Random random = new Random();


            public Solution(int[][] _rects) {
                rects = _rects;
            }

            public int[] pick() { //等效从一堆点中抽一个点,若在某个矩形中包含被抽到的点,则等效抽到这个矩形
                int index = -1, n = 0; //分别记录抽到的矩形下标、当前点的总数
                for (int i = 0; i < rects.length; i++) {
                    int a = rects[i][0], b = rects[i][1], x = rects[i][2], y = rects[i][3];
                    int k = (x - a + 1) * (y - b + 1); //当前矩形包含的点数量
                    n += k;
                    if (random.nextInt(n) < k) index = i; //当前矩形有k/n的概率被保留
                }
                int[] rect = rects[index]; //抽到矩形后,再从这个矩形中随机抽取x、y的值
                int x1 = rect[0], x2 = rect[2], y1 = rect[1], y2 = rect[3];
                return new int[]{x1 + random.nextInt(x2 - x1 + 1), y1 + random.nextInt(y2 - y1 + 1)};
            }
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值