机器学习笔记之代价函数

Cost Function

We can measure the accuracy of our hypothesis function by using a cost function. This takes an average difference (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's and the actual output y's.

J(θ0,θ1)=12mi=1m(y^iyi)2=12mi=1m(hθ(xi)yi)2

To break it apart, it is  12   x¯  where  x¯  is the mean of the squares of  hθ(xi)yi  , or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or "Mean squared error". The mean is halved  (12) as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the  12  term. The following image summarizes what the cost function does:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值