一些关于CV和deeplearning的干货链接(长期更新)

目录

 

yolo系列汇总:

关于batch normalization的理解:

各类归一化方法的总结及代码:

YJango的卷积神经网络介绍:

目标检测SSD讲解:

关于AP PR曲线计算的理解(内附代码,生肉,英文):

解释了yolov3的forward和anchor box相关内容

关于数据增强的奇淫技巧:

一篇超级全的数据增强博客:

yolov3 pytorch教程:

标注工具汇总:

github上7k星的pytorch教程(对不起,现在已经8k星了):

github上2w+星的tensorflow教程:

经典论文原文及其中文对照翻译:

分割线 -------------------------------------

数据增强代码:

手写数字识别博客:

keras搭建cnn实现手写数字识别:

关于残差网络的解析:

pytorch官方教程翻译:

HyperLPR:深度学习高性能车牌识别

服装开源数据集(6w测试集1w数据集):

服装识别开源实例(看到新的会再补充,这部分最近有可能会关注一下):

损失函数各类交叉熵讲解(从信息量和熵来推导,浅显易懂)

交通灯数据集:

模型可视化工具(支持多种主流框架):

CVPR2019论文:

SSD讲解:

一文搞懂faster-rcnn:

模型转化工具(支持TF,Keras,Pytorch,MXNet多种主流框架):

AI学习资料整理:

CVPR2019 | 29篇目标检测相关论文汇总(部分含源码)

边缘检测论文集合(含代码):

基于yolov3和crnn的ocr识别:

Python-Opencv入门:

Pytorch代码调试利器,自动print Tensor信息:

coco2014数据集下载地址:

车道线检测论文及代码汇总:

模型所需计算力统计工具pytorch-OpCounter:

CNN模型解读合集:

李宏毅机器学习在线阅读笔记:

微软亚洲研究院开源项目:

交通标志数据集Mapillary Traffic Sign Dataset:

Pytorch中文教程:

Torchcv 基于Pytorch的开源CV框架:

LFFD 一个轻量级的检测器(人脸/人头/行人/车牌/车辆):

高斯YOLOv3:使用定位不确定性进行自动驾驶的精确快速目标检测器:

PAN 一个快速的文本检测算法:

1MB轻量级人脸带关键点检测算法:

目标检测数据集转换工具:

YOLO系列资料整合:

一个RCNN系列讲解超级棒的博客:

Pytorch官方出品的一本深度学习的书:

新鲜开源ASFF,一个贼吊的目标检测器:

Pytorch2Tensorrt的python API:

ICCV2019辅助驾驶资料汇总:

YOLO的各种变种:

Pytorch训练加速123--如何给cpu数据读取加速:

基于GAN的黄种人人脸生成器:

Anchor Free论文合集:

CrowdHuman+Double Anchor:强强联合,推动密集行人检测技术落地:

首个使用 NAS 设计的 GCN,达到动作识别SOTA:

NVIDIA AI TOT团队的实时人体姿态估计:

基于CenterNet魔改的姿态估计CenterPose:

YOLACT++ 开源实时实例分割网络:

UCF-Crime Dataset:

零售商品检测的基准:密集目标检测的强大baseline:

vedaseg:A semantic segmentation toolbox in pytorch:

何凯明新作,视频理解代码开源:

一个暴力事件检测的数据集:


yolo系列汇总:

关于yolov1讲的比较清楚的博客:

https://blog.csdn.net/hrsstudy/article/details/70305791

关于yolov1原理解释的幻灯片:

https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000#slide=id.g137784ab86_4_1509

关于anchor box讲的比较清楚的博客:

https://blog.csdn.net/zijin0802034/article/details/77685438

  • 注意作者文中说的:线性变换,宽度和高度必需相等,指的是proposal和ground truth的宽和高要近似相等,不能相差太多才是线性变换。

关于yolov2讲的比较清楚的博客:

https://blog.csdn.net/zijin0802034/article/details/77097894

  • 里面提到了对偏移量txty做logistic的原因

关于yolov3的部分解读:

https://xmfbit.github.io/2018/04/01/paper-yolov3/

  • 里面提到了梯度如何计算的问题

关于batch normalization的理解:

https://www.cnblogs.com/guoyaohua/p/8724433.html

各类归一化方法的总结及代码:

https://blog.csdn.net/liuxiao214/article/details/81037416

YJango的卷积神经网络介绍:

https://zhuanlan.zhihu.com/p/27642620

目标检测SSD讲解:

https://zhuanlan.zhihu.com/p/33544892

关于AP PR曲线计算的理解(内附代码,生肉,英文):

https://github.com/rafaelpadilla/Object-Detection-Metrics#create-the-ground-truth-files

解释了yolov3的forward和anchor box相关内容

解释了源码yolo_layer.c line195~237,待验证):

https://blog.csdn.net/weixin_41015185/article/details/84189515

关于数据增强的奇淫技巧:

https://www.zhihu.com/question/35339639

一篇超级全的数据增强博客:

https://blog.csdn.net/daniaokuye/article/details/78535879

yolov3 pytorch教程:

  • 英文原版生肉(大概能解决你一半以上关于Yolov3的困惑)

https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/

  • 知乎翻译中文

https://zhuanlan.zhihu.com/p/36899263

  • 对应github(快去给他小星星吧)

https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch

标注工具汇总:

https://blog.csdn.net/chaipp0607/article/details/79036312

github上7k星的pytorch教程(对不起,现在已经8k星了):

https://github.com/yunjey/pytorch-tutorial

github上2w+星的tensorflow教程:

https://github.com/aymericdamien/TensorFlow-Examples

  • 不喜欢英文的可以看这个,pytorch 0.4中文文档:

https://ptorch.com/docs/8/

经典论文原文及其中文对照翻译:

  • Alexnet   VGG  Resnet  GoogLenet  BN-GoogLenet  Inception-v3  SENet
  • YOLO  SSD  YOLO9000  Deformable-ConvNets  Faster R-CNN  R-FCN  FPN
  • CRNN  CTPN

https://github.com/jiajunhua/SnailTyan-deep-learning-papers-translation

 

分割线 -------------------------------------

数据增强代码:

github.com/aleju/imgaug

手写数字识别博客:

https://blog.csdn.net/qq_33000225/article/details/73123880

keras搭建cnn实现手写数字识别:

https://www.jianshu.com/p/b22e708a3f37

关于残差网络的解析:

https://blog.csdn.net/rogerchen1983/article/details/79353972

pytorch官方教程翻译:

https://mp.weixin.qq.com/s?__biz=Mzg5NzAxMDgwNg==&mid=2247484041&idx=1&sn=a3580ff29d34556a3eb26ddba8b01e29&chksm=c0791f90f70e9686fb7afec2a3f5c3aeb2694fd054c7a45fb51829e9e85c7aa5c2b0580bc3be&mpshare=1&scene=23&srcid=0109XWDDUIVRlU1lezhBKF4t#rd

HyperLPR:深度学习高性能车牌识别

https://github.com/zeusees/HyperLPR

服装开源数据集(6w测试集1w数据集):

https://github.com/zalandoresearch/fashion-mnist/tree/master/data/fashion

服装识别开源实例(看到新的会再补充,这部分最近有可能会关注一下):

https://github.com/KaiJin1995/fashionAI2018/tree/master

损失函数各类交叉熵讲解(从信息量和熵来推导,浅显易懂)

https://www.jianshu.com/p/47172eb86b39

https://blog.csdn.net/red_stone1/article/details/80735068

交通灯数据集:

博世小交通灯数据集(用于深度学习的小型交通灯数据集):

https://hci.iwr.uni-heidelberg.de/node/6132

LaRa交通灯识别(巴黎交通灯数据集):

http://www.lara.prd.fr/benchmarks/trafficlightsrecognition

WPI数据集(交通灯/行人/车道检测数据集):

http://computing.wpi.edu/dataset.html

交通信号灯/交通指示牌数据集:

https://github.com/ytzhao/Robotics/wiki/TS-and-TL-Dataset

模型可视化工具(支持多种主流框架):

https://github.com/lutzroeder/Netron

CVPR2019论文:

https://github.com/extreme-assistant/cvpr2019

SSD讲解:

https://blog.csdn.net/qianqing13579/article/details/82106664

一文搞懂faster-rcnn:

https://zhuanlan.zhihu.com/p/31426458

模型转化工具(支持TF,Keras,Pytorch,MXNet多种主流框架):

https://github.com/Microsoft/MMdnn

AI学习资料整理:

https://mp.weixin.qq.com/s?__biz=Mzg5NzAxMDgwNg==&mid=2247484212&idx=1&sn=18de3f24ff47ff0e096c38ce90a8d95d&chksm=c0791e2df70e973b03a0496ac045974f581bade3a05aa1416104b5556a515acf0ee07a1c3554&mpshare=1&scene=23&srcid=#rd

CVPR2019 | 29篇目标检测相关论文汇总(部分含源码)

https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=2247488715&idx=1&sn=e5cb3e73e0a15aa88155bb3807f28121&chksm=ec1ff932db687024dd482e169355b9e37c3c3c4041263634b2a37c0a0f3408b961d3ed1fe4b3&mpshare=1&scene=23&srcid=#rd

边缘检测论文集合(含代码):

https://mp.weixin.qq.com/s?__biz=Mzg5ODAzMTkyMg==&mid=2247485964&idx=1&sn=e87ee7dc9f05c105f555e1e768e5756b&chksm=c0698251f71e0b4786ccf8e91b4c6c888982916063a70c23b78aed5d42ace9ef53c6caa593e7&mpshare=1&scene=23&srcid=#rd

基于yolov3和crnn的ocr识别:

https://github.com/chineseocr/chineseocr

Python-Opencv入门:

http://www.1zlab.com/article/opencv-face-detection/

Pytorch代码调试利器,自动print Tensor信息:

https://github.com/zasdfgbnm/TorchSnooper

coco2014数据集下载地址:

国外:https://blog.csdn.net/u013249853/article/details/84924808

国内:https://blog.csdn.net/weixin_43599336/article/details/86539042

车道线检测论文及代码汇总:

https://github.com/amusi/awesome-lane-detection

模型所需计算力统计工具pytorch-OpCounter:

https://github.com/Lyken17/pytorch-OpCounter

CNN模型解读合集:

https://zhuanlan.zhihu.com/p/65564209

李宏毅机器学习在线阅读笔记:

https://datawhalechina.github.io/leeml-notes

微软亚洲研究院开源项目:

https://mp.weixin.qq.com/s/EDDeWQdfEeh8tISMpPOsCQ

交通标志数据集Mapillary Traffic Sign Dataset:

https://www.mapillary.com/dataset/trafficsign

Pytorch中文教程:

https://pytorch.apachecn.org/

Torchcv 基于Pytorch的开源CV框架:

https://github.com/donnyyou/torchcv

LFFD 一个轻量级的检测器(人脸/人头/行人/车牌/车辆):

原版:https://github.com/YonghaoHe/A-Light-and-Fast-Face-Detector-for-Edge-Devices

Pytorch版:https://github.com/becauseofAI/lffd-pytorch

高斯YOLOv3:使用定位不确定性进行自动驾驶的精确快速目标检测器:

https://github.com/jwchoi384/Gaussian_YOLOv3

PAN 一个快速的文本检测算法:

https://github.com/WenmuZhou/PAN.pytorch

1MB轻量级人脸带关键点检测算法:

https://github.com/biubug6/Face-Detector-1MB-with-landmark?tdsourcetag=s_pctim_aiomsg

目标检测数据集转换工具:

https://github.com/spytensor/prepare_detection_dataset

YOLO系列资料整合:

https://github.com/Bubble-water/YOLO-Summary

一个RCNN系列讲解超级棒的博客:

http://www.telesens.co/2018/03/11/object-detection-and-classification-using-r-cnns/

Pytorch官方出品的一本深度学习的书:

https://zhuanlan.zhihu.com/p/93116220

新鲜开源ASFF,一个贼吊的目标检测器:

https://github.com/ruinmessi/ASFF

Pytorch2Tensorrt的python API:

https://github.com/NVIDIA-AI-IOT/torch2trt

ICCV2019辅助驾驶资料汇总:

https://mp.weixin.qq.com/s/PFPGX4dDtj_1A4nvtBNFRA

YOLO的各种变种:

ASFF: Learning Spatial Fusion for Single-Shot Object Detection

https://github.com/ruinmessi/ASFF

Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

https://github.com/Zzh-tju/DIoU-darknet

Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving

https://github.com/jwchoi384/Gaussian_YOLOv3

PRN: Enriching Variety of Layer-wise Learning Information by Gradient Combination

https://github.com/WongKinYiu/PartialResidualNetworks

一个更优秀的backbone:Cross Stage Partial Networks

https://github.com/WongKinYiu/CrossStagePartialNetworks

彩蛋:Centernet也可以用Darknet实现

https://github.com/CaoWGG/CenterNet-darknet

Pytorch训练加速123--如何给cpu数据读取加速:

针对CPU到GPU的张量迁移工具:

https://zhuanlan.zhihu.com/p/82666665

给训练踩踩油门 —— Pytorch 加速数据读取:

https://zhuanlan.zhihu.com/p/80695364

在深度学习中喂饱gpu:

https://zhuanlan.zhihu.com/p/77633542

基于GAN的黄种人人脸生成器:

https://github.com/a312863063/seeprettyface-generator-yellow

Anchor Free论文合集:

https://github.com/VCBE123/AnchorFreeDetection

CrowdHuman+Double Anchor:强强联合,推动密集行人检测技术落地:

https://zhuanlan.zhihu.com/p/95253096

首个使用 NAS 设计的 GCN,达到动作识别SOTA:

https://github.com/xiaoiker/GCN-NAS

NVIDIA AI TOT团队的实时人体姿态估计:

https://github.com/NVIDIA-AI-IOT/trt_pose

基于CenterNet魔改的姿态估计CenterPose:

https://github.com/tensorboy/centerpose

YOLACT++ 开源实时实例分割网络:

https://github.com/dbolya/yolact

UCF-Crime Dataset:

https://webpages.uncc.edu/cchen62/dataset.html

零售商品检测的基准:密集目标检测的强大baseline:

https://github.com/ParallelDots/generic-sku-detection-benchmark

vedaseg:A semantic segmentation toolbox in pytorch:

https://zhuanlan.zhihu.com/p/98561946

何凯明新作,视频理解代码开源:

https://github.com/facebookresearch/SlowFast?tdsourcetag=s_pctim_aiomsg

一个暴力事件检测的数据集:

https://github.com/ZHEQIUSHUI/Violence-Recognition-Dataset

身份证要素提取:

https://github.com/Mingtzge/2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement

口罩检测:

https://aijishu.com/a/1060000000091759?from=timeline&isappinstalled=0

轻量级中文OCR识别,模型仅17M:

https://github.com/ouyanghuiyu/chineseocr_lite

表情识别数据库RaFD:

http://www.socsci.ru.nl:8180/RaFD2/RaFD?p=main

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值