四 Pytorch构建分类器

12 篇文章 5 订阅 ¥9.90 ¥99.00
本文介绍了如何使用PyTorch构建一个CIFAR10图像分类器,包括下载数据集、定义卷积神经网络、设置损失函数、训练模型并在测试集上评估性能,最后探讨了在GPU上训练模型以加速过程。
摘要由CSDN通过智能技术生成

目录

1 训练分类器的步骤

2 下载数据集

3 展示数据集

4 定义卷积神经网络

5 定义损失函数

6 在训练集上训练模型

7 在测试集上测试模型

8 在GPU上训练模型


1 训练分类器的步骤

  1. 使用torchvision下载CIFAR10数据集
  2. 定义卷积神经网络
  3. 定义损失函数
  4. 在训练集上训练模型
  5. 在测试集上测试模型

2 下载数据集

import torch
import torchvision
import torchvision.transforms as transforms

# 下载数据集并对图片进行调整,因为torchvision数据集的输出是PILmage格式,数据域在[0,1],我们将其转换为标准数据域[-1,1]的张量格式
transform = transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))]) # 标准代码

trainset = torchvision.datasets.CIFAR10(root = "./data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OR_0295

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值