贝叶斯方法的m-估计

为什么要有m-估计?

当我们通过在全部事件的基础上观察某事件出现的比例来估计概率时,例如:P=nc/n.,其中nc为该类别中的样本数量,n为总样本数量。若n=5,当P=0.6时,则nc3。多数情况下该比例是对概率的一个良好的估计。但当nc很小时估计会较差,例如:P=0.08,样本中同样有5个样例,那么对于nc最可能的取值只有0,。这会导致两个问题:

1、nc/n产生了一个有偏的过低估计概率。

2、当此概率估计为0时,将来的查询此概率项将会在贝叶斯分类器中占统治地位。原因是贝叶斯公式中计算得量其他所有概率项都将乘以此0值。

为了避免此问题,所以需要采用一种估计概率,即如下定义的m-估计:

 

其中nc为该类别中的样本数量,n为总样本数量,p为将要确定的概率的先验估计,m为等效样本大小的常量

 

 

为什么m-估计的公式是这样的?

首先,请思考问题出现的根本原因,问题出现的根本原因是样本数量过小。所以为了避免此问题,最好的方法是等效的扩大样本的数量,即在为观察样本添加m等效的样本,所以要在该类别中增加的等效的类别的数量就是等效样本数m乘以先验估计p。

 

为什么在贝叶斯应用(如mahout)中使用的公式如下呢?

 

其中nk为单词W出现的次数,n为所有单词出现的次数。

 

其实,这只是m的取值的关系,当等效样本数m为词汇表中的单词数时,自然取统一的先验概率p的值就是1/|vocabulary|咯。

http://blog.csdn.net/cyningsun/article/details/8671975

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值