贝叶斯估计、最大似然估计、最大后验概率估计

1.背景知识

 1.1 概率与统计

概率论是集中研究概率及随机现象的数学分支,是研究随机性不确定性等现象的数学。
统计学是在数据分析的基础上,研究如何测定、收集、整理、归纳和分析反映数据,以便给出正确消息的科学。

概率论是在给定条件(已知模型和参数)下,对要发生的事件(新输入数据)的预测统计推断是在给定数据(训练数据)下,对数据生成方式(模型和参数)的归纳总结。概率论是统计学的数学基础,统计学是对概率论的应用

1.2 联合概率和边缘概率

假设有随机变量,此时用于表示同时发生的概率。这类包含多个条件且所有条件同时成立的概率称为联合概率。请注意,联合概率并不是其中某个条件成立的概率,而是所有条件同时成立的概率。与之对应地,或这类与单个随机变量有关的概率称为边缘概率

联合概率与边缘概率的关系如下:

 1.3 条件概率

条件概率表示在条件成立的情况下,的概率,记作,或者说条件概率是指事件在另外一个事件已经发生条件下的发生概率。为了简洁表示,后面省略a,b。

联合概率边缘概率条件概率的关系如下:

转换为乘法形式:

1.4 全概率公式

如果事件构成一个完备事件组,即它们两两互不相容(互斥),其和为全集;并且大于0,则对任意事件

上面的公式称为全概率公式。全概率公式是对复杂事件的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。

1.5 贝叶斯公式

由条件概率的乘法形式可得:

上面的式子称为贝叶斯公式,也叫做贝叶斯定理或贝叶斯法则。在贝叶斯定理中,每个名词都有约定俗成的名称:

  • 是已知发生条件概率,也由于得自的取值而被称作后验概率,表示事件发生后,事件发生的置信度
  • 先验概率边缘概率,表示事件发生的置信度
  • 是已知发生后的条件概率,也由于得自的取值而被称作后验概率,也被称作似然函数
  • 先验概率边缘概率,称为标准化常量。
  • 称为标准似然比(这个叫法很多,没找到标准统一的叫法),表示事件为事件发生提供的支持程度。

因此贝叶斯公式可表示为:后验概率=似然函数*先验概率/标准化常量=标准似然比*先验概率。根据标准似然比的大小,可分为下面三种情况:

  • 如果标准似然比>1,则先验概率得到增强,事件的发生会增大事件发生的可能性;
  • 如果标准似然比=1,则先验概率保持不变,事件的发生不影响事件发生的可能性;
  • 如果标准似然比<1,则先验概率得到削弱,事件的发生会降低事件发生的可能性。

由全概率公式、贝叶斯法则可得:

1.6 似然与概率

在英文中,似然(likelihood)概率(probability)是同义词,都指事件发生的可能性。但在统计中,似然与概率是不同的东西。概率是已知参数,对结果可能性的预测。似然是已知结果,对参数是某个值的可能性预测。

1.7 似然函数与概率函数

对于函数,从不同的观测角度来看可以分为以下两种情况:

  • 如果已知且保持不变,是变量,则称为概率函数,表示不同出现的概率。
  • 如果已知且保持不变,是变量,则P(|)称为似然函数,表示不同下,出现的概率,也记作

注:注意似然函数的不同写法。

1.8 推断统计中需要了解的一些概念

  • 假设实际观测值与真实分布相关,试图根据观测值来推测真实分布
  • 由于观测值取值随机,因此由它们计算得到的估计值也是随机值
  • 估计方式多种多样,且不同估计方式得到的估计值也有所不同

样本、样本容量、参数统计、非参数统计、估计量、真实分布、经验分布。

1.9 频率学派与贝叶斯学派

注:频率学派贝叶斯学派只是解决问题的角度不同。

频率学派与贝叶斯学派探讨「不确定性」这件事时的出发点与立足点不同。频率学派从「自然」角度出发,试图直接为「事件」本身建模,即事件在独立重复试验中发生的频率趋于极限,那么这个极限就是该事件的概率。

贝叶斯学派并不从试图刻画「事件」本身,而从「观察者」角度出发。贝叶斯学派并不试图说「事件本身是随机的」,或者「世界的本体带有某种随机性」,这套理论根本不言说关于「世界本体」的东西,而只是从「观察者知识不完备」这一出发点开始,构造一套在贝叶斯概率论的框架下可以对不确定知识做出推断的方法。

频率学派的代表是最大似然估计贝叶斯学派的代表是最大后验概率估计

1.10 共轭先验

在贝叶斯统计中,如果后验分布与先验分布属于同类,则先验分布与后验分布被称为共轭分布,而先验分布被称为似然函数的共轭先验。

1.11 Beta分布

在概率论中,Beta分布也称Β分布,是指一组定义在区间的连续概率分布,有两个参数。Beta分布的概率密度为:

其中,函数。随机变量服从Beta分布写作

2.问题定义

以抛硬币为例,假设我们有一枚硬币,现在要估计其正面朝上的概率。为了对进行估计,我们进行了10次实验(独立同分布,i.i.d.),这组实验记为,其中正面朝上的次数为6次,反面朝上的次数为4次,结果为

3.最大似然估计(MLE)

最大似然估计,英文为Maximum Likelihood Estimation,简写为MLE,也叫极大似然估计,是用来估计概率模型参数的一种方法。最大似然估计的思想是使得观测数据(样本)发生概率最大的参数就是最好的参数。

对一个独立同分布的样本集来说,总体的似然就是每个样本似然的乘积。针对抛硬币的问题,似然函数可写作:

根据最大似然估计,使取得最大值的即为估计结果,令可得。似然函数图如下:

由于总体的似然就是每个样本似然的乘积,为了求解方便,我们通常会将似然函数转成对数似然函数,然后再求解。可以转成对数似然函数的主要原因是对数函数不影响函数的凹凸性。因此上式可变为:

可得

正态分布的最大似然估计

假设样本服从正态分布,则其似然函数为

对其取对数得:

分别对求偏导,并令偏导数为0,得:

解得:

就是正态分布中的最大似然估计。

最大似然估计的求解步骤:

  • 确定似然函数
  • 将似然函数转换为对数似然函数
  • 求对数似然函数的最大值(求导,解似然方程)

4. 最大后验概率估计(MAP)

最大后验概率估计,英文为Maximum A Posteriori Estimation,简写为MAP。回到抛硬币的问题,最大似然估计认为使似然函数最大的参数即为最好的,此时最大似然估计是将看作固定的值,只是其值未知;最大后验概率分布认为是一个随机变量,即具有某种概率分布,称为先验分布,求解时除了要考虑似然函数之外,还要考虑的先验分布,因此其认为使取最大值的就是最好的。此时要最大化的函数变为,由于的先验分布是固定的(可通过分析数据获得,其实我们也不关心的分布,我们关心的是),因此最大化函数可变为,根据贝叶斯法则,要最大化的函数,因此要最大化的函数是,而的后验概率。最大后验概率估计可以看作是正则化的最大似然估计,当然机器学习或深度学习中的正则项通常是加法,而在最大后验概率估计中采用的是乘法,是正则项。在最大似然估计中,由于认为是固定的,因此

最大后验概率估计的公式表示:

在抛硬币的例子中,通常认为的可能性最大,因此我们用均值为,方差为的高斯分布来描述先验分布,当然也可以使用其它的分布来描述的先验分布。的先验分布为:

先验分布的函数图如下:

在最大似然估计中,已知似然函数为,因此:

转换为对数函数:

,可得:

由于,解得的函数图像如下,基本符合的估计值

如果我们用均值为,方差为的高斯分布来描述的先验分布,则。由此可见,在最大后验概率估计中,的估计值与的先验分布有很大的关系。这也说明一个合理的先验概率假设是非常重要的。如果先验分布假设错误,则会导致估计的参数值偏离实际的参数值。

先验分布Beta分布

如果用的Beta分布来描述的先验分布,则

求解可得:

的概率密度图像如下图:

 

最大后验概率估计的求解步骤:

  • 确定参数的先验分布以及似然函数
  • 确定参数的后验分布函数
  • 将后验分布函数转换为对数函数
  • 求对数函数的最大值(求导,解方程)

贝叶斯估计

贝叶斯估计是最大后验估计的进一步扩展,贝叶斯估计同样假定是一个随机变量,但贝叶斯估计并不是直接估计出的某个特定值,而是估计的分布,这是贝叶斯估计与最大后验概率估计不同的地方。在贝叶斯估计中,先验分布是不可忽略的。回到抛硬币的例子中,在已知的情况下,描述的分布即描述是一种后验分布。如果后验分布的范围较,则估计值的准确度相对较,反之,如果后验分布的范围较广,则估计值的准确度就较低。

贝叶斯公式:

在连续型随机变量中,由于,因此贝叶斯公式变为:

从上面的公式中可以看出,贝叶斯估计的求解非常复杂,因此选择合适的先验分布就非常重要。一般来说,计算积分是不可能的。对于这个抛硬币的例子来说,如果使用共轭先验分布,就可以更好的解决这个问题。二项分布参数的共轭先验是Beta分布,由于的似然函数服从二项分布,因此在贝叶斯估计中,假设先验分布服从Beta分布的概率密度公式为:

因此,贝叶斯公式可写作:

从上面的公式可以看出,。其中函数,也称函数,是一个标准化常量,用来使整个概率的积分为1就是贝叶斯估计的结果。

如果使用贝叶斯估计得到的分布存在一个有限均值,则可以用后验分布的期望作为的估计值。假设,在这种情况下,先验分布会在处取得最大值,则的曲线如下图:

从上图可以看出,在的情况下,的估计值应该在附近。根据Beta分布的数学期望公式可得:

注:二项分布参数的共轭先验是Beta分布多项式分布参数的共轭先验是Dirichlet分布指数分布参数的共轭先验是Gamma分布⾼斯分布均值的共轭先验是另⼀个⾼斯分布泊松分布的共轭先验是Gamma分布。

贝叶斯估计要解决的不是如何估计参数,而是用来估计新测量数据出现的概率,对于新出现的数据

贝叶斯估计的求解步骤:

  • 确定参数的似然函数
  • 确定参数的先验分布,应是后验分布的共轭先验
  • 确定参数的后验分布函数
  • 根据贝叶斯公式求解参数的后验分布

7. 总结

从最大似然估计、最大后验概率估计到贝叶斯估计,从下表可以看出的估计值是逐渐接近的。从公式的变化可以看出,使用的信息是逐渐增多的。最大似然估计、最大后验概率估计中都是假设未知,但是确定的值,都将使函数取得最大值的作为估计值,区别在于最大化的函数不同,最大后验概率估计使用了的先验概率。而在贝叶斯估计中,假设参数是未知的随机变量,不是确定值,求解的是参数在样本上的后验分布。

注:最大后验概率估计和贝叶斯估计都采用Beta分布作为先验分布。

 

 

 

 

 

 

  • 17
    点赞
  • 99
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 贝叶斯估计最大似然估计都是概率统计中的常见方法,它们在统计学和机器学习中都有广泛的应用。 贝叶斯估计最大似然估计都是用来估计概率分布中的参数的方法。其中,最大似然估计是根据样本数据来确定参数值,使得这些参数下的样本出现的概率最大;而贝叶斯估计则考虑了先验概率和后验概率,根据贝叶斯公式计算得到参数的后验分布,进而计算参数的期望值或最大后验概率最大似然估计通常用于数据量大、数据质量高、先验知识较少的情况下,是一个无偏估计;而贝叶斯估计则可以考虑先验知识,并对参数的不确定性进行建模,可以更加准确地估计参数值,但需要对先验分布进行假设,且计算比较复杂。 因此,在实际应用中,选择哪种方法取决于数据的性质、先验知识以及需要的精度等因素。 ### 回答2: 贝叶斯估计最大似然估计是统计学中常用的两种参数估计方法,它们的主要差异体现在以下几个方面: 1. 假设的不同:贝叶斯估计方法假设参数是一个未知的随机变量,而最大似然估计方法认为参数是一个确定的值。 2. 参数的表示方式:贝叶斯估计方法将参数表示为一个概率分布,即参数的后验分布,而最大似然估计方法将参数表示为一个点估计,即参数的估计值。 3. 数据处理:最大似然估计方法只利用样本数据本身的统计特性来估计参数,而贝叶斯估计方法结合了先验信息和样本数据的统计特性进行参数估计。 4. 置信区间的计算:最大似然估计方法主要关注参数的点估计,不涉及参数的置信区间的计算。而贝叶斯估计方法可以通过后验分布计算参数的置信区间。 5. 估计的稳定性:贝叶斯估计方法可以通过引入先验信息来提高参数估计的稳定性,尤其在样本数据较少或者噪声较大的情况下有较好的表现。而最大似然估计方法对于不满足大样本条件或者出现过拟合等问题时,估计结果可能不稳定。 综上所述,贝叶斯估计最大似然估计估计方法的假设、参数表示方式、数据处理、置信区间计算以及估计的稳定性等方面存在差异。具体选择哪种方法取决于问题的背景和数据的特点。 ### 回答3: 贝叶斯估计最大似然估计是两种常用的参数估计方法,它们有着一些显著的差异。 首先,贝叶斯估计最大似然估计的目标不同。最大似然估计的目标是找到一个使得已观测数据在该参数下的概率最大化的参数值。而贝叶斯估计不仅关注已观测数据,还引入了先验概率,利用先验信息来更新参数的估计。 其次,贝叶斯估计得到的结果是一个后验分布,而最大似然估计得到的结果是一个点估计贝叶斯估计通过贝叶斯定理将先验概率与似然函数相结合,得到参数的后验分布。这个后验分布能够在不同的先验信息下进行不同方案的比较,并提供了更全面的信息。而最大似然估计只给出一个点估计,无法提供参数的不确定性度量。 另外,贝叶斯估计不仅关注已观测数据,也关注参数本身。它可以通过引入先验概率来减小数据量小的情况下参数估计的方差。而最大似然估计则仅仅关注已观测数据,忽略了参数本身的信息。 最后,贝叶斯估计需要指定先验概率,而最大似然估计不需要。选择先验概率是贝叶斯估计中的一个关键问题,它可以根据领域知识或者过去的经验来确定。但是如果选择不当,会导致结果出现偏差。 综上所述,贝叶斯估计最大似然估计在目标、结果形式、参数不确定性度量和先验概率等方面存在差异。选择哪种估计方法应根据具体问题和可用信息的性质来决定。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值