频率响应分析方法

 
摘要:大家知道电感的阻抗为什么是 j w L jwL jwL吗?滤波器的截止频率为什么是 1 2 π R C \frac1{2\pi RC} 2πRC1吗?本文将从复数的概念给大家推导出电感(容)的阻抗公式,并进一步以滤波器为例给大家介绍电路频率响应分析方法。
在这里插入图片描述
 

一、复数

我们在高等数学中学习了复数的概念:形如 Z = a + b i Z=a+bi Z=a+bi的数称为复数,其中规定 i i i为虚数单位,且 a 、 b a、b ab是任意实数;同时规定 i 2 = − 1 i^2=-1 i2=1(在复平面中, i i i特指“逆时针旋转 9 0 。 90^。 90”的变换)。
复数 Z = a + b i Z=a+bi Z=a+bi的模是 Z Z Z点到复平面圆心处的距离:
∣ Z ∣ = a 2 + b 2 (1) |Z|=\sqrt{a^2+b^2}\tag{1} Z=a2+b2 (1)

复数 Z = a + b i Z=a+bi Z=a+bi的幅角 φ \varphi φ是复数在复平面中与X正半轴的夹角:

幅角

二、电感(容)阻抗公式推导

回到摘要中的问题:电感的阻抗为什么是 j w L jwL jwL

大家都知道电感最基本(也是最重要)的公式是:
U = L d i d t (2) U=L\frac{di}{dt}\tag{2} U=Ldtdi(2)

再根据傅里叶变换原理,我们的电信号都是可以用傅里叶级数展开,由无数的正弦波构成。所以假设电感电流为:
i = I 0 sin ⁡ ( w t ) (3) i=I_0\sin(wt)\tag{3} i=I0sin(wt)(3)

所以电感电压为:
U = L d i d t = L I 0 w sin ⁡ ( w t + π 2 ) (4) U=L\frac{di}{dt}=LI_0w\sin(wt+\frac\pi2)\tag{4} U=Ldtdi=LI0wsin(wt+2π)(4)

电感电压除以电流就得到电感的阻抗:
Z L = u i = L I 0 w sin ⁡ ( w t + π 2 ) I 0 sin ⁡ ( w t ) = j w L (5) Z_L=\frac ui=\frac{LI_0w\sin(wt+\frac\pi2)}{I_0\sin(wt)}=jwL\tag{5} ZL=iu=I0sin(wt)LI0wsin(wt+2π)=jwL(5)

说明:电感电压比电流相位超前 9 0 。 90^。 90,所以这里直接引入虚数单位 j j j(在复平面中, j j j特指“逆时针旋转 9 0 。 90^。 90”的变换)。

同理,可推导出电容的阻抗为:
Z C = 1 j w C (6) Z_C=\frac1{jwC}\tag{6} ZC=jwC1(6)

三、滤波器的频率响应分析

通过上述的推导发现电感(容)的阻抗是一个复数,所以用复数来分析电路将会非常方便;并且复数的模可以体现电路的幅频特性,复数的幅角可以体现电路的相频特性。

这是一个无源单级RC高通滤波器电路:
无源单级RC高通滤波器
滤波器的增益为:
A v = U o U i = R R + 1 j w C = j w R C ∗ ( 1 − j w R C ) ( 1 + j w R C ) ( 1 − j w R C ) = ( w R C ) 2 1 + ( w R C ) 2 + j w R C 1 + ( w R C ) 2 (7) A_v=\frac{U_o}{U_i}=\frac R{R+\frac1{jwC}}=\frac{jwRC*(1-jwRC)}{(1+jwRC)(1-jwRC)}=\frac{(wRC)^2}{1+(wRC)^2}+\frac{jwRC}{1+(wRC)^2}\tag{7} Av=UiUo=R+jwC1R=(1+jwRC)(1jwRC)jwRC(1jwRC)=1+(wRC)2(wRC)2+1+(wRC)2jwRC(7)

滤波器的幅频特性为:
∣ A v ∣ = w R C 1 + ( w R C ) 2 1 + ( w R C ) 2 = w R C 1 + ( w R C ) 2 (8) |A_v|=\frac{wRC\sqrt{1+(wRC)^2}}{1+(wRC)^2}=\frac {wRC}{\sqrt{1+(wRC)^2}}\tag{8} Av=1+(wRC)2wRC1+(wRC)2 =1+(wRC)2 wRC(8)

使用Matlab绘制高通滤波器的幅频特性曲线:

    w = linspace(0,99,100)
    R = 10
    C = 0.01
    y =w.*R.*C./sqrt(1+(w.*R.*C).^2)
    plot(w,y)

高通滤波器幅频特性曲线
同时我们还可以求解出高通滤波器的截止频率( A v = 2 2 A v m a x A_v=\frac{\sqrt2}2A_{vmax} Av=22 Avmax):
∵ 2 2 = w R C 1 + ( w R C ) 2 (9) \because\frac{\sqrt2}2=\frac {wRC}{\sqrt{1+(wRC)^2}}\tag{9} 22 =1+(wRC)2 wRC(9)

∴ w = 1 R C (10) \therefore w=\frac1{RC}\tag{10} w=RC1(10)

∴ f L = 1 2 π R C (11) \therefore f_L=\frac1{2\pi RC}\tag{11} fL=2πRC1(11)

下面再让我们看一个例子,电路图如下:
在这里插入图片描述
按照上述方法计算滤波器的增益:
A v = R 2 R 1 + R 2 + 1 j w C (12) A_v=\frac {R_2}{R_1+R_2+\frac1{jwC}}\tag{12} Av=R1+R2+jwC1R2(12)

滤波器的幅频特性为:
1 ∣ A v ∣ = ( R 1 + R 2 ) 2 + 1 ( w C ) 2 R 2 (13) \frac1{|A_v|}=\frac{\sqrt{(R_1+R_2)^2+\frac1{(wC)^2}}}{R_2}\tag{13} Av1=R2(R1+R2)2+(wC)21 (13)

∴ ∣ A v ∣ = R 2 ( R 1 + R 2 ) 2 + 1 ( w C ) 2 (14) \therefore |A_v|=\frac{R_2}{\sqrt{(R_1+R_2)^2+\frac1{(wC)^2}}}\tag{14} Av=(R1+R2)2+(wC)21 R2(14)

所以滤波器的截止频率为:
f L = 1 2 π 2 R 2 2 − ( R 1 + R 2 ) 2 ∗ C (15) f_L=\frac1{2\pi \sqrt{2{R_2}^2-(R_1+R_2)^2}*C}\tag{15} fL=2π2R22(R1+R2)2 C1(15)

为什么举这个例子呢?一是因为这个电路网络非常重要, R 1 R_1 R1可以看作前级电路的输出阻抗, R 2 R_2 R2可以看作后级电路的输出阻抗或负载,C为前后级电路的耦合电容;二是因为大多数人会自然而然地以为该电路网络的截止频率应该是 f L = 1 2 π ( R 1 + R 2 ) C f_L=\frac1{2\pi (R_1+R_2)C} fL=2π(R1+R2)C1,所以我就在这里给出推导过程,消除大家的误解。

电路设计中的网络结构多种多样,有容性负载,也有感性负载,但只要掌握上述推理方法,总能拨开云雾见天日,守得云开见月明

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于高频射频滤波器的频率响应分析和优化,你可以使用一些信号处理工具和优化算法来实现。以下是一种基本的代码框架,可以帮助你开始实现这个过程: ```python import numpy as np from scipy import signal from scipy.optimize import minimize # 定义目标函数 def objective_function(x, freq, target_response): # x 是滤波器的设计参数 # freq 是频率范围 # target_response 是目标的频率响应曲线 # 根据设计参数 x 构建滤波器的频率响应 filter_response = construct_filter_response(x, freq) # 计算目标函数(频率响应的差异) diff = filter_response - target_response cost = np.sum(np.abs(diff)) return cost # 构建滤波器的频率响应 def construct_filter_response(x, freq): # 根据设计参数 x 构建滤波器的传递函数 # 例如,可以使用巴特沃斯滤波器或其他滤波器设计方法 # 返回滤波器的频率响应 return filter_response # 设计参数的约束条件 def constraint(x): # 定义设计参数的约束条件 # 例如,可以限制参数的取值范围 # 返回约束条件是否满足的布尔值 return constraint_satisfied # 定义频率范围和目标频率响应曲线 freq = np.linspace(0, 1, 1000) target_response = # 设置目标的频率响应曲线 # 设计参数的初始值 x0 = # 设置初始设计参数值 # 优化设计参数 result = minimize(objective_function, x0, args=(freq, target_response), constraints={'type': 'ineq', 'fun': constraint}) # 最优设计参数 optimal_params = result.x # 构建最优滤波器的频率响应 optimal_filter_response = construct_filter_response(optimal_params, freq) ``` 这是一个简单的框架,你需要根据具体的滤波器设计方法和优化需求来实现 `construct_filter_response` 函数和 `constraint` 函数。可以使用信号处理库(如SciPy)提供的函数来辅助实现滤波器的设计和频率响应分析。请注意,这只是一个示例代码框架,你需要根据具体的需求进行适当的修改和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值