5.1 频率响应概述

一、研究放大电路频率响应的必要性

在放大电路中,由于电抗元件(如电容、电感线圈等)及半导体管极间电容的存在,当输入信号的频率过低或过高时,不但放大倍数的数值会变小,而且还将产生超前或者滞后的相移,说明放大倍数是信号频率的函数,这种函数关系称为频率响应频率特性。放大电路的“通频带”就是用来描述电路对不同频率信号适应能力的动态参数,对于任何一个具体的放大电路都有一个确定的通频带。因此,在设计电路时,必须首先了解信号的频率范围,以便使用的电路具有适应于该信号频率范围的通频带;在使用电路前,应查阅手册、资料,或实测其通频带,以便确定电路的适用范围。
以前电路分析中,所用的双极型管和单极型管的等效模型均未考虑极间电容的作用,即认为它们对信号频率呈现出的电抗值为无穷大,因而它们只适用于对低频信号的分析。

二、频率响应的基本概念

在放大电路中,由于耦合电容的存在,对信号构成了高通电路,即对于频率足够高的信号电容相当于短路,信号几乎毫无损失地通过;而当信号频率低到一定程度时,电容的容抗不可忽略,信号将在其上产生压降,从而导致放大倍数的数值减小且产生相移。与耦合电容相反,由于半导体极间电容的存在,对信号构成了低通电路,即对于频率足够低的信号相当于开路,对电路不产生影响;而当信号频率高到一定程度时,极间电容将分流,从而导致放大倍数数值减小且产生相移。为了便于理解有关频率响应的基本要领,这里对无源单级 RC 电路的频率响应加以分析。

1、高通电路

在这里插入图片描述在图5.1.1(a)所示高通电路中,设输出电压 U ˙ o \dot U_o U˙o 与输入电压 U ˙ i \dot U_i U˙i 之比为 A ˙ u \dot A_u A˙u,则 A ˙ u = U ˙ o U ˙ i = R 1 j ω C + R = 1 1 + 1 j ω R C ( 5.1.1 ) \dot A_u=\frac{\dot U_o}{\dot U_i}=\frac{R}{\displaystyle\frac{1}{j\omega C}+R}=\frac{1}{1+\displaystyle\frac{1}{j\omega RC}}\kern 20pt(5.1.1) A˙u=U˙iU˙o=C1+RR=1+RC11(5.1.1)式中 ω \omega ω 为输入信号的角频率,RC 为回路的时间常数 τ \tau τ,令 ω L = 1 R C = 1 τ \omega_L=\displaystyle\frac{1}{RC}=\frac{1}{\tau} ωL=RC1=τ1,则 f L = ω L 2 π = 1 2 π τ = 1 2 π R C ( 5.1.2 ) f_L=\frac{\omega_L}{2π}=\frac{1}{2π\tau}=\frac{1}{2πRC}\kern 70pt(5.1.2) fL=2πωL=2πτ1=2πRC1(5.1.2)因此 A ˙ u = 1 1 + ω L j ω = 1 1 + f L j f = j f f L 1 + j f f L ( 5.1.3 ) \dot A_u=\frac{1}{1+\displaystyle\frac{\omega_L}{j\omega}}=\frac{1}{1+\displaystyle\frac{f_L}{jf}}=\displaystyle\frac{j\displaystyle\frac{f}{f_L}}{1+j\displaystyle\frac{f}{f_L}}\kern 30pt(5.1.3) A˙u=1+ωL1=1+jffL1=1+jfLfjfLf(5.1.3) A ˙ u \dot A_u A˙u 用其幅值与相角表示,得出 { ∣ A ˙ u ∣ = f f L 1 + ( f f L ) 2 ( 5.1.4 a ) φ = 90 ° − arctan ⁡ f f L ( 5.1.4 b ) \left\{\begin{matrix}|\dot A_u|=\displaystyle\frac{\displaystyle\frac{f}{f_L}}{\sqrt{1+\displaystyle(\frac{f}{f_L}})^2}\kern 93pt(5.1.4a)\\\varphi=90°-\arctan\displaystyle\frac{f}{f_L}\kern 91pt(5.1.4b)\\\end{matrix}\right. A˙u=1+(fLf )2fLf(5.1.4a)φ=90°arctanfLf(5.1.4b)因式(5.1.4a)表明 A ˙ u \dot A_u A˙u 的幅值与频率的函数关系,故称之为 A ˙ u \dot A_u A˙u幅频特性;因式5.1.4(b)表明 A ˙ u \dot A_u A˙u 的相位与频率的函数关系,故称之为 A ˙ u \dot A_u A˙u相频特性
由式(5.1.4)可知,当 f > > f L f>>f_L f>>fL 时, ∣ A ˙ u ∣ ≈ 1 |\dot A_u|\approx1 A˙u1 φ ≈ 0 ° \varphi\approx0° φ;当 f = f L f=f_L f=fL 时, ∣ A ˙ u ∣ = 1 / 2 ≈ 0.707 |\dot A_u|=1/\sqrt2\approx0.707 A˙u=1/2 0.707 φ = 45 ° \varphi=45° φ=45°;当 f < < f L f<<f_L f<<fL 时, f / f L < < 1 f/f_L<<1 f/fL<<1 ∣ A ˙ u ∣ ≈ f / f L |\dot A_u|\approx f/f_L A˙uf/fL,表明 f f f 每下降 10 倍, ∣ A ˙ u ∣ |\dot A_u| A˙u 也下降 10 倍;当 f f f 趋于零时, ∣ A ˙ u ∣ |\dot A_u| A˙u 也趋于零, φ \varphi φ 趋于 + 90 ° +90° +90°。由此可见,对于高通电路,频率愈低,衰减愈大,相移愈大;只有当信号频率远高于 f L f_L fL 时, U ˙ o \dot U_o U˙o 才约为 U ˙ i \dot U_i U˙i。称 f L f_L fL下限截止频率,简称下限频率,在该频率下, A ˙ u \dot A_u A˙u 的幅值下降到 70.7%,相移恰为 + 45 ° +45° +45°。画出图5.1.1(a)所示电路的频率特性曲线如图(b)所示,上边为幅频特性曲线,下边为相频特性曲线。

2、低通电路

在这里插入图片描述图5.1.2(a)所示为低通电路,输出电压 U ˙ o \dot U_o U˙o 与输入电压 U ˙ i \dot U_i U˙i 之比 A ˙ u = U ˙ o U ˙ i = 1 j ω C R + 1 j ω C = 1 1 + j ω R C ( 5.1.5 ) \dot A_u=\frac{\dot U_o}{\dot U_i}=\frac{\displaystyle\frac{1}{j\omega C}}{R+\displaystyle\frac{1}{j\omega C}}=\frac{1}{1+j\omega RC}\kern 40pt(5.1.5) A˙u=U˙iU˙o=R+C1C1=1+RC1(5.1.5)回路的时间常数 τ = R C \tau=RC τ=RC,令 ω H = 1 τ \omega_H=\displaystyle\frac{1}{\tau} ωH=τ1,则 f H = ω H 2 π = 1 2 π τ = 1 2 π R C ( 5.1.6 ) f_H=\frac{\omega_H}{2π}=\frac{1}{2πτ}=\frac{1}{2πRC}\kern 80pt(5.1.6) fH=2πωH=2πτ1=2πRC1(5.1.6)代入式(5.1.5)可得 A ˙ u = 1 1 + j ω ω H = 1 1 + j f f H ( 5.1.7 ) \dot A_u=\frac{1}{1+j\displaystyle\frac{\omega}{\omega_H}}=\frac{1}{1+j\displaystyle\frac{f}{f_H}}\kern 80pt(5.1.7) A˙u=1+jωHω1=1+jfHf1(5.1.7) A ˙ u \dot A_u A˙u 用其幅值及相角表示,得出 { ∣ A ˙ u ∣ = 1 1 + ( f f H ) 2 ( 5.1.8 a ) φ = − arctan ⁡ f f H ( 5.1.8 b ) \left\{\begin{matrix}|\dot A_u|=\displaystyle\frac{1}{\sqrt{1+\displaystyle(\frac{f}{f_H}})^2}\kern 111pt(5.1.8a)\\\varphi=-\arctan\displaystyle\frac{f}{f_H}\kern 126pt(5.1.8b)\\\end{matrix}\right. A˙u=1+(fHf )21(5.1.8a)φ=arctanfHf(5.1.8b)式(5.1.8a)是 A ˙ u \dot A_u A˙u 的幅频特性,式(5.1.8b)是 A ˙ u \dot A_u A˙u 的相频特性。从对式(5.1.8)的分析可得,当 f < < f H f<<f_H f<<fH 时, ∣ A ˙ u ∣ ≈ 1 |\dot A_u|\approx1 A˙u1 φ ≈ 0 ° \varphi\approx0° φ;当 f = f H f=f_H f=fH 时, ∣ A ˙ u ∣ = 1 / 2 ≈ 0.707 |\dot A_u|=1/\sqrt2\approx0.707 A˙u=1/2 0.707 φ = − 45 ° \varphi=-45° φ=45°;当 f > > f H f>>f_H f>>fH 时, f / f H > > 1 f/f_H>>1 f/fH>>1 ∣ A ˙ u ∣ ≈ f H / f |\dot A_u|\approx f_H/f A˙ufH/f,表明 f f f 每升高 10 倍, ∣ A ˙ u ∣ |\dot A_u| A˙u 降低 10 倍;当 f f f 趋于无穷时, ∣ A ˙ u ∣ |\dot A_u| A˙u 趋于零, φ \varphi φ 趋于 − 90 ° -90° 90°。由此可见,对于低通电路,频率愈高,衰减愈大,相移愈大;只有当频率远低于 f H f_H fH 时, U ˙ o \dot U_o U˙o 才约为 U ˙ i \dot U_i U˙i。称 f H f_H fH上限截止频率,简称上限频率,在该频率下, ∣ A ˙ u ∣ |\dot A_u| A˙u 降到 70.7%,相移为 − 45 ° -45° 45°。画出幅频特性曲线与相频特性曲线如图5.1.2(b)所示。
放大电路上限频率 f H f_H fH 与下限频率 f L f_L fL 之差就是其通频带 f b w f_{bw} fbw,即 f b w = f H − f L ( 5.1.9 ) f_{bw}=f_H-f_L\kern 150pt(5.1.9) fbw=fHfL(5.1.9)

三、波特图

在研究放大电路的频率响应时,输入信号(即加在放大电路输入端的测试信号)的频率范围常常设置在几赫到上百兆赫,甚至更宽;而放大电路的放大倍数可从几倍到上百万倍;为了在同一坐标系中表示如此宽的变化范围,在画频率特性曲线时常采用对数坐标,称为波特图
波特图由对数幅频特性和对数相频特性两部分组成,他们的横轴用对数刻度 lg ⁡ f \pmb{\lg f} lgf幅频特性的纵轴采用 20 lg ⁡ ∣ A ˙ u ∣ \pmb{20\lg|\dot A_u|} 20lgA˙u 表示,单位是分贝(dB);相频特性的纵轴仍用 φ \varphi φ 表示。这样不但开阔了视野,而且将放大倍数的乘除运算转换成加减运算。
根据式(5.1.4a),高通电路的对数幅频特性为 20 lg ⁡ ∣ A ˙ u ∣ = 20 lg ⁡ f f L − 20 lg ⁡ 1 + ( f f L ) 2 ( 5.1.10 ) 20\lg|\dot A_u|=20\lg\frac{f}{f_L}-20\lg\sqrt{1+\left(\frac{f}{f_L}\right)^2}\kern 20pt(5.1.10) 20lgA˙u=20lgfLf20lg1+(fLf)2 (5.1.10)与式(5.1.4b)联立可知,当 f > > f L f>>f_L f>>fL 时, 20 lg ⁡ ∣ A ˙ u ∣ ≈ 0   dB 20\lg|\dot A_u|\approx0\,\textrm{dB} 20lgA˙u0dB φ ≈ 0 ° \varphi\approx0° φ;当 f = f L f=f_L f=fL 时, 20 lg ⁡ ∣ A ˙ u ∣ = − 20 lg ⁡ 2 ≈ − 3   dB 20\lg|\dot A_u|=-20\lg\sqrt2\approx-3\,\textrm{dB} 20lgA˙u=20lg2 3dB φ = + 45 ° \varphi=+45° φ=+45°;当 f < < f L f<<f_L f<<fL 时, 20 lg ⁡ ∣ A ˙ u ∣ ≈ 20 lg ⁡ f f L 20\lg|\dot A_u|\approx20\lg\displaystyle\frac{f}{f_L} 20lgA˙u20lgfLf,表明 f f f 每下降 10 倍,增益下降 20 dB,即对数幅频特性在此区间可等效成斜率为 20 dB/十倍频的直线。
根据式(5.1.8a),低通电路的对数幅频特性为 20 lg ⁡ ∣ A ˙ u ∣ = − 20 lg ⁡ 1 + ( f f H ) 2 ( 5.1.11 ) 20\lg|\dot A_u|=-20\lg\sqrt{1+\left(\frac{f}{f_H}\right)^2}\kern 60pt(5.1.11) 20lgA˙u=20lg1+(fHf)2 (5.1.11)与式(5.1.8b)联立可知,当 f < < f H f<<f_H f<<fH 时, 20 lg ⁡ ∣ A ˙ u ∣ ≈ 0   dB 20\lg|\dot A_u|\approx0\,\textrm{dB} 20lgA˙u0dB φ ≈ 0 ° \varphi\approx0° φ;当 f = f H f=f_H f=fH 时, 20 lg ⁡ ∣ A ˙ u ∣ = − 20 lg ⁡ 2 ≈ − 3   dB 20\lg|\dot A_u|=-20\lg\sqrt2\approx-3\,\textrm{dB} 20lgA˙u=20lg2 3dB φ = − 45 ° \varphi=-45° φ=45°;当 f > > f H f>>f_H f>>fH 时, 20 lg ⁡ ∣ A ˙ u ∣ ≈ − 20 lg ⁡ f f H 20\lg|\dot A_u|\approx-20\lg\displaystyle\frac{f}{f_H} 20lgA˙u20lgfHf,表明 f f f 每上升 10 倍,增益下降 20 dB,即对数幅频特性在此区间可等效成斜率为 -20 dB/十倍频的直线。
在电路的近似分析中,为简单起见,常将波特图的曲线折线化,称为近似的波特图。对于高通电路,在对数幅频特性中,以截止频率 f L \pmb{f_L} fL 为拐点,由两段直线近似曲线。当 f > f L f>f_L f>fL 时, 20 lg ⁡ ∣ A ˙ u ∣ = 0   dB 20\lg|\dot A_u|=0\,\textrm{dB} 20lgA˙u=0dB 的直线近似;当 f < f L f<f_L f<fL 时,以斜率为 20 dB/十倍频的直线近似。在对数相频特性中,用三段直线取代曲线;以 10 f L \pmb{10f_L} 10fL 0.1 f L \pmb{0.1f_L} 0.1fL 为两个拐点,当 f > 10 f L f>10f_L f>10fL 时,用 φ = 0 ° \varphi=0° φ= 的直线近似,即认为 f = 10 f L f=10f_L f=10fL A ˙ u \dot A_u A˙u 开始产生相移(误差为 -5.71°);当 f < 0.1 f L f<0.1f_L f<0.1fL 时,用 φ = + 90 ° \varphi=+90° φ=+90° 的直线近似,即认为 f = 0.1 f L f=0.1f_L f=0.1fL 时已产生 + 90° 的相移(误差为 5.71°);当 0.1 f L < f < 10 f L 0.1f_L<f<10f_L 0.1fL<f<10fL 时, φ \varphi φ f f f 线性下降,因此当 f = f L f=f_L f=fL 时, φ = + 45 ° \varphi=+45° φ=+45°。图5.1.1(a)所示高通电路的波特图如图5.1.3(a)所示。
用同样的方法,将低通电路的对数幅频特性以 f H f_H fH 为拐点用两段直线近似,对数相频特性以 0.1 f H 0.1f_H 0.1fH 10 f H 10f_H 10fH 为拐点用三段直线近似,图5.1.2(a)所示低通电路的波特图如图5.1.3(b)所示。在这里插入图片描述综上所述,得出以下结论:
(1)电路的截止频率决定于电容所在回路的时间常数 τ \tau τ,如图5.1.1(a)和图5.1.2(a)所示电路的 f L f_L fL f H f_H fH 分别如式(5.1.2)、(5.1.6)所示。
(2)当信号频率等于下限截止频率 f L f_L fL 或上限截止频率 f H f_H fH 时,放大电路的增益下降 3 dB,且产生 +45° 或 -45° 相移。
(3)在近似分析中,可用折线化的近似波特图描述放大电路的频率特性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值