ESP32入门:1、VSCode+PlatformIO环境搭建(离线快速安装)

背景

  • 对于刚接触单片机的同学,使用vscode+platformIO来学习ESP32是最方便快捷的,比IDF框架简单,且比arduino文件管理性能更好。
  • 但是platformIO安装较为麻烦,由于platform下载源在国外,安装很慢,因此提出该教程。

安装vscode

安装

  • vscode,服务器在国内,安装较为快捷,直接官网下载安装即可,记得安装时全部选上右键功能:https://code.visualstudio.com/
    在这里插入图片描述
  • 默认安装在C盘即可
    在这里插入图片描述
  • 需要注意,这里要全部选上
    在这里插入图片描述

配置中文

  • 安装完成vscode后,首先选择界面环境,默认为黑色,然后点击下一步2即可:
    在这里插入图片描述
  • 然后点击下面的安装完成:
    在这里插入图片描述
  • 下面配置中文,点击下面的扩展,依次点击1、2、3:
    在这里插入图片描述
  • 然后点击弹窗中的4即可完成语言切换:
    在这里插入图片描述

安装Platform IO

安装PIO

  • Platform IO简称PIO,是VS Code中的一个插件。在扩展中搜索安装,如下:点击安装即可。
    在这里插入图片描述
  • 这一步安装速度较快,因为PIO插件在vscode的插件仓库内,国内可以直接访问安装。安装完成之后,我们看到如下图1所示,PIO开始安装自己的核了,这里PIO安装核时会去国外安装,速度较慢。我们点击下图中2处的外星人图标,可以看到其正在安装。
    在这里插入图片描述
  • 我们果断关闭vscode,找到C盘用户路径下,可以看到有一个.platform的目录:
    在这里插入图片描述
  • 我们将这个文件夹删掉,然后找一个别人已经安装好platform的文件夹,复制到这里。这里我将我已经安装好的文件上传到了网盘,可以点击下载:https://www.123pan.com/s/yMOkTd-8h70A.html
  • 我们找到压缩包,将其解压:
    在这里插入图片描述
  • 解压后得到文件夹.platformio,如下,复制到我们刚刚删除的地方,以我的为例,在:C:/用户/24358路径下面。
    在这里插入图片描述
  • 复制到我们的用户路径下,如下:
    在这里插入图片描述
  • 双击打开该文件夹,里面内容如下:即为正确
    在这里插入图片描述

新建ESP32工程

  • 我们新建工程,测试安装是否成功:

  • 在桌面新建文件夹,ESP32,然后在文件夹内(1处),右键,选择使用code打开:
    在这里插入图片描述

  • 打开后如下:点击信任
    在这里插入图片描述

  • 然后点击PIO的外星人图标,接着点击2处、3处:
    在这里插入图片描述- 如下,1处是我们的项目名字,我们叫做Test1,2处是我们的开发板型号,这里需要和我们开发板一致,选择ESP32 Dev Module,3处选择Arduino,然后在4处取消使用默认路径,在5处找到我们刚刚新建的ESP32文件夹。
    在这里插入图片描述

  • 然后下滑,找到finish,点击
    在这里插入图片描述

  • 新建项目如下:
    在这里插入图片描述

  • 我们关掉vscode,回到文件管理器,可以看到我们原本空的ESP32文件夹下,多出来了一个Test1文件夹,里面即为我们的工程目录:
    在这里插入图片描述

  • 我们进入到Test1文件夹下,右键选择用code打开:
    在这里插入图片描述

  • 打开后,找到main.cpp,可以看到里面的源码:
    在这里插入图片描述

  • 点击下方的对钩,可以进行编译:
    在这里插入图片描述

  • 等待编译完成后,连接上开发板,点击右箭头的图标,可以上传我们的程序到开发板。
    在这里插入图片描述

参考

离线安装

<think>嗯,用户想了解虾哥小智开源项目如何接入AI的技术文档和教程。首先,我需要查看用户提供的引用内容,看看有没有相关的信息。引用3提到了一个开源项目,主要用于教学目的,帮助入门AI硬件开发,涉及大语言模型的应用。项目实现了离线语音唤醒、ESP-SR流式语音对话、多种语言识别、声纹识别、大模型TTS和LLM等功能,硬件部分包括面包板手工制作。 用户提到的“虾哥小智”可能就是这个项目,但引用中没有直接提到项目名称,但根据描述,很可能是同一个。接下来,用户需要知道如何接入AI的技术文档和教程。根据引用3,项目文档应该包含在项目仓库里,比如README和Wiki。用户需要访问项目地址,但引用中没有给出具体链接,可能需要引导用户到GitCode或类似平台搜索项目名称。不过,根据引用3中的信息,项目已经实现了接入大语言模型如Qwen2.5 72B或豆包API,这可能涉及到API调用和配置。 接下来,我应该分步骤说明如何接入AI,可能包括环境配置、模型选择、API集成、硬件连接等。同时需要提到技术文档的位置,比如项目仓库中的文档部分,以及可能的教程链接。由于引用中没有直接给出项目地址,可能需要用户自行搜索,或者假设项目地址在GitCode上,如引用1中的AI_ChatBot_Python项目,但不确定是否相关。这里可能需要更详细的推断,但根据引用3的信息,重点应放在项目本身提供的功能和硬件集成步骤上。 另外,用户可能需要知道如何配置语音唤醒、流式对话、声纹识别等功能,这些在项目中已经实现,所以需要指导用户查看相应的模块文档。例如,ESP-SR流式语音对话可能涉及WebSocket或UDP协议,大模型LLM的接入可能需要API密钥和网络配置。硬件部分可能需要连接OLED/LCD显示屏和传感器,这部分在技术文档中应有详细说明。 最后,生成相关问题,可能涉及项目支持的语言、硬件要求、API服务选择、调试方法等。需要确保回答结构清晰,分步骤说明,并引用提供的引用内容,特别是引用3中的详细信息。</think>### 虾哥小智开源项目接入AI技术说明 根据项目技术文档[^3],虾哥小智项目的AI接入主要分为以下几个关键步骤: --- #### **1. 环境搭建与开发工具** - **硬件基础**:需准备支持Wi-Fi/4G通信的开发板(如ESP32系列)、麦克风阵列、扬声器、OLED/LCD显示屏等 - **软件依赖**: ```bash # 安装ESP-IDF开发框架 git clone --recursive https://github.com/espressif/esp-idf.git cd esp-idf && ./install.sh ``` - 推荐使用VSCode+PlatformIO插件进行开发,具体配置方法可参考ESP-ADF环境配置指南[^2] --- #### **2. AI模型接入流程** 1. **语音交互模块**: - 使用ESP-SR实现离线唤醒词识别,配置唤醒词模型路径: ```c // esp_sr_wakeup_model.c #define WAKEUP_NET_PATH "/models/wakeup_model.bin" ``` - 支持5种语言识别,通过`esp_sr_set_language()`函数切换语言模式 2. **大语言模型接入**: - **方案选择**: - 本地部署:Qwen2.5 72B模型(需至少16GB显存) - 云端API:豆包/火山引擎API(推荐初学者) - API调用示例: ```python import requests def get_ai_response(prompt): headers = {"Authorization": "Bearer YOUR_API_KEY"} response = requests.post("https://api.doubao.com/v1/chat", json={"model": "qwen-72b-chat", "messages": [{"role": "user", "content": prompt}]}, headers=headers) return response.json()['choices'][0]['message']['content'] ``` 3. **声纹识别集成**: - 使用SenseVoice SDK进行声纹注册: ```python from sensevoice import VoiceprintEnroller enroller = VoiceprintEnroller() enroller.enroll_from_audio("user_audio.wav", user_id="001") ``` --- #### **3. 硬件交互配置** ```c // 显示模块驱动示例 void display_response(const char* text) { oled_clear(); oled_draw_string(0, 0, text, FONT_6x8); oled_update(); } ``` --- #### **4. 教学资源** 1. [项目Wiki](https://gitcode.com/开源项目地址/wiki)中包含: - 语音模型训练教程 - API密钥申请指南 - 硬件电路原理图 2. 实验案例:通过`examples/chatbot`目录下的示例代码学习对话系统搭建 ---
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天城寺电子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值