决策树预备知识

决策树是一个简单的判别模型,并且可以出现在训练集上100%的准确率

决策树的内部节点是特征,叶子表示的就是标签

在具体介绍决策树之前,首先介绍它的先驱概念

1.如何通过比特(01)来表示一个随机变量X的序列

例如:: BACADDCBAC.....转化成为01001000111110010010.......

假如:P(A)= P(B)=P(C)=P(D),需要四种不同的比特来表示,且概率相等,那么笔者认为可以借助抛硬币的的方式决定,一枚硬币可以产生(0,1)两种信息表示,那么用两枚硬币,便可以表示均等的信息描述

ABCD
00011011

进行表示,可以匹配上述案例,

加入,X中,ABCD,出现的概率不均等,我们就需要采用不同的比特表示方式了

P(X=A)=1/2 P(X=B)=1/4 P(X=C)=1/8 P(X=D)=1/8

在这种情况下,根据概率,来从新设计变量的比特表示:

首先,P(X=A)= 1/2,那么我们次啊用一个比特位来描述,无非就是(0,1)两种情况,我们默认采用一位0来表示A,

P(B) = 1/4,那么两位比特位,可以确定四种表示 ,P(B)=1/4,所以采用先确定以为1,再使用一位0,来表示1/4,则B= 10

P(C)和P(D)各为1/8,所以,在四分之分一,再分两份,在P(B)的基础上继续分割。所以采用三位比特,110,和111l来表示:

汇总可得:

ABCD
010110111

则上述案例BACADDCBAC,可表示为:10|0|110|0|111|111|110|10|0|110  为避免混淆,采用|分割。

E=1 * \frac{1}{2}+2 * \frac{1}{4}+3 * \frac{1}{8}+3 * \frac{1}{8}=1.75

E=-\log _{2}\left(\frac{1}{2}\right) * \frac{1}{2}-\log _{2}\left(\frac{1}{4}\right) * \frac{1}{4}-\log _{2}\left(\frac{1}{8}\right) * \frac{1}{8}-\log _{2}\left(\frac{1}{8}\right) * \frac{1}{8}=1.75

平均需要1.75个比特位表示一个字母的信息

由此,我们可以推断出,

假设现在随机变量X具有m个值,分别为: V1 ,V2 ,....,Vm;并且各 个值出现的概率如下表所示

P(X=V1 )=p1 P(X=V2 )=p2 P(X=V3 )=p3 .................... P(X=Vm)=pm

\begin{aligned} E(X) &=-p_{1} \log _{2}\left(p_{1}\right)-p_{2} \log _{2}\left(p_{2}\right)-\ldots-p_{m} \log _{2}\left(p_{m}\right) \\ &=-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right) \end{aligned}

比特化的结果就是信息熵:

H(X)=-\sum_{i=1}^{m} p_{i} \log _{2}\left(p_{i}\right)

• High Entropy(高信息熵):表示随机变量X是均匀分布的,各种取值情况是 等概率出现的。

• Low Entropy(低信息熵):表示随机变量X各种取值不是等概率出现。可能 出现有的事件概率很大,有的事件概率很小。

给定条件X的情况下,所有不同x值情况下Y的信息熵的平均值叫 做条件熵。另外一个公式如下所示:

H(Y \mid X)=H(X, Y)-H(X)

事件(X,Y)发生所包含的熵,减去事件X单独发生的熵,即为在事 件X发生的前提下,Y发生“新”带来的熵,这个也就是条件熵本身的概念。

\begin{aligned} H(Y \mid X) &=\sum_{j=1} P\left(\mathrm{X}=\mathrm{v}_{\mathrm{j}}\right) H\left(Y \mid X=v_{j}\right)=\sum_{x} P(\mathrm{x}) H(Y \mid x) \\ &=\sum_{x} p(x)\left(-\sum_{y} p(y \mid x) \log (p(y \mid x))\right)=-\sum_{x} \sum_{y} p(x) p(y \mid x) \log (p(y \mid x)) \\ &=-\sum_{x} \sum_{y} p(x, y) \log \left(\frac{p(x, y)}{p(x)}\right) \\ &=-\sum_{x} \sum_{y} p(x, y) \log (p(x, y))-\left[-\sum_{x}\left(\sum_{y} p(x, y)\right) \log (p(x))\right] \\ &=H(X, Y)-\left[-\sum_{x} p(x) \log (p(x))\right]=H(X, Y)-H(X) \end{aligned}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值