1.数组的生成
import numpy as np
np.array([1, 2, 3])
np.array((1, 2, 3))
np.array({"a": 1, "b": 2})
np.array([[1,2, 3], [1,2, 3]])
np.arange(1, 15, 3)
np.zeros(15)
np.zeros((2, 3))
np.ones((2, 3))
np.eye(3)
np.random.rand(3)
np.random.rand(2, 3)
np.random.randn(10)
np.random.randint(1, 5, 3)
np.random.randint(1, 5, [2, 3])
np.random.choice([1,2 ,3], [2, 3])
np.random.choice(3, 3)
a = np.arange(10)
np.random.shuffle(a)
a
2.数组的基本属性
import numpy as np
arr = np.array([[1, 2], [1, 2], [1, 2]])
arr.shape
arr.size
arr.dtype
arr.ndim
3.数组的数据选择
3.1 一维数组的选择
import numpy as np
arr = np.arange(10)
arr[3]
arr[-1]
arr[3:5]
arr[3:]
arr[:3]
arr[3:-2]
arr[arr>4]
3.2 多维数组的选择
arr = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]])
arr[0]
arr[1:3]
arr[:2]
arr[2:]
arr[2:-1]
arr[:,0]
arr[:,0:2]
arr[1:5, 1:3]
4.数据类型的转换
arr = np.arange(10)
arr.astype(np.float64)
arr.astype(np.string_)
5.数据的缺失值处理
arr = np.array([1, 2, np.nan, 4])
np.isnan(arr)
arr[np.isnan(arr)] = 3
arr
6.数据的重复值处理
arr = np.array([1, 2, 1])
np.unique(arr)
7.数组重置
arr = np.arange(10)
arr.reshape(2, 5)
arr.reshape(1, 10)
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11,12]])
arr.reshape(2, 6)
arr.T
8.数组合并
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])
np.concatenate([arr1, arr2], axis=1)
np.hstack([arr1, arr2])
np.column_stack([arr1, arr2])
np.concatenate([arr1, arr2], axis=0)
np.vstack([arr1, arr2])
np.row_stack([arr1, arr2])
9.数组的统计函数
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
arr.sum()
arr.mean()
arr.min()
arr.max()
arr.mean(axis=1)
arr.sum(axis=0)
10.数据的条件函数
np.where(arr< 5)
np.where(arr<5,True, False)
np.where(arr<5, '满足', '不满足')
11.数组的集合函数
arr1 = np.arange(3)
arr2 = np.array([1, 2, 3, 4, 5])
np.in1d(arr1, arr2)
np.intersect1d(arr1,arr2)
np.union1d(arr1, arr2)
np.setdiff1d(arr1, arr2)