Python numpy操作

numpy.ndarray (array)

全零矩阵生成

np.zero(shape, dtype),shape=(行数,列数)

import numpy as np
mx = np.zeros(shape = (5,8), dtype = np.int16)
print(type(mx))
# 输出:<class 'numpy.ndarray'>

拼接

参考:Numpy系列之ndarray数组的维度变换,拼接,分割和复制
给已有的数据添加多行:np.concatenate([a,b],axis=0) 或 np.vstack([a,b])

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = np.arange(7,13).reshape(2,3)
c = np.concatenate([a,b],axis=0)
d = np.vstack([a,b])
print(a) # 输出[[1 2 3] [4 5 6]]
print(b) # 输出[[ 7  8  9] [10 11 12]]
print(c) # 输出[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]
print(d) # 输出[[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]

给已有的数据添加多列:np.concatenate([a,b],axis=1) 或 np.hstack([a,b])

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = np.arange(7,13).reshape(2,3)
c = np.concatenate([a,b],axis=1)
d = np.hstack([a,b])
print(a) # 输出[[1 2 3] [4 5 6]]
print(b) # 输出[[ 7  8  9] [10 11 12]]
print(c) # 输出[[ 1  2  3  7  8  9] [ 4  5  6 10 11 12]]
print(d) # 输出[[ 1  2  3  7  8  9] [ 4  5  6 10 11 12]]

数据类型转换

参考:python numpy矩阵的数据类型转换
numpy的数据类型转换需要调用astype(),直接修改dtype是无效的

>>> a = np.array([1.0, 2.0])
>>> a.dtype
dtype('float64') # np默认的格式即为float64
>>> a.astype(np.int16)
array([1, 1], dtype=int16)
>>> a.dtype
dtype('float64') # 矩阵a的数据类型并没有变
>>> a = a.astype(np.int16) # 对源数据的赋值操作后a的数据类型变化
>>> a.dtype
dtype('int16')
>>> a
array([1, 1], dtype=int16)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值