Cellpress|单细胞文章|单细胞转录和大队列食管癌免疫治疗

新辅助免疫检查点阻断 (ICB) 在可手术食管鳞状细胞癌 (ESCC) 中显示出希望,但缺乏可用的疗效生物标志物。该文章对接受新辅助 ICB 的 ESCC 患者的肿瘤进行单细胞 RNA 测序,发现一组表达SPRY1 (CD8 + Tex-SPRY1) 的耗竭 CD8 + T 细胞亚群,其显示祖细胞耗竭 T 细胞 (Tpex) 表型并与对 ICB 的完全反应相关。使用独立的 ICB-/非 ICB 队列验证 CD8 + Tex-SPRY1 细胞作为改善反应和生存的 ICB 特异性预测因子,并证明 CD8 + T 细胞中 SPRY1 的表达强化了 Tpex 表型并增强了 ICB 疗效。此外,CD8 + Tex-SPRY1 细胞有助于巨噬细胞的促炎表型和 B 细胞的功能状态,从而通过增强 CD8 + T 细胞效应功能来促进抗肿瘤免疫。总体而言,该研究结果揭示了祖细胞样 CD8 + Tex-SPRY1 细胞在 ESCC 对 ICB 的有效反应中的作用,并为未来的个性化免疫治疗提供了机制生物标志物。
文章亮点

scRNA-seq 揭示ESCC 患者中存在祖细胞样 CD8 + Tex-SPRY1 细胞

CD8 + T 细胞中的 SPRY1 表达可增强 Tpex 并增强新辅助免疫检查点阻断( ICB)疗效

CD8 + Tex-SPRY1 细胞可预测 ICB 疗法的有效反应和生存率提高

CD8 + Tex-SPRY1 细胞与巨噬细胞和 B 细胞的相互作用增强了 ICB 反应

分析结果

以下结果依次原理示意图、免疫治疗前后 ESCC 的细胞概况、祖细胞样 CD8 + Tex 细胞的鉴定、CD8 + Tex-SPRY1 预测 ESCC 免疫治疗的良好结果、SPRY1在CD8 + T细胞中的表达增加Tpex的比例并增强对抗PD-1治疗肿瘤的响应性、促炎性 Macro-MMP9 与 CD8 + Tex-SPRY1相互作用、TLS相关B细胞与CD8 + Tex-SPRY1相互作用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
分析代码

代码详细说明

代码地址:https://github.com/walzimmer/3d-bat?tab=readme-ov-file

在这里插入图片描述

环境配置

R 4.1.1
Python 3.8.8
Seurat 4.1.1
SeuratObject 4.1.0
SingleCellExperiment 1.14.1
GenomicRanges 1.44.0
cowplot 1.1.1
ggplot2 3.3.6
ggrepel 0.9.1
survival 3.2-13
dplyr 1.0.9
Rcpp 1.0.8.3
data.table 1.14.2
anndata 0.8.0
scanpy 1.9.1
scipy 1.7.1
louvain 0.7.0
scvelo 0.2.4
sklearn 0.22
statannot 0.2.3
statsmodels 0.12.2
igraph 0.9.6
networkx 2.6.2
matplotlib 3.6.1

由于时间和资源有限,还没有亲自复现过,欢迎大家留言讨论,如果对结果或者方法实现有疑问的可以联系管理员进行解决:kriswcyYQ。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELMSSA-ELM的具体实现代码,并通过波士顿房价数据集其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器习尤其是回归预测感兴趣的科研人员技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例性能对比图表,帮助读者更好地理解复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值