拉格朗日乘子法

本文介绍了拉格朗日乘子法在解决最优化问题中的应用,特别是在支持向量机(SVM)的基本型中。讨论了无约束、等式约束和不等式约束条件下的最优化问题,重点讲述了拉格朗日乘子法如何用于求解具有等式约束的最短距离问题,并通过实例展示了如何利用该方法找到曲线上到原点的最短距离。最后,给出了拉格朗日乘子法的方程组求解过程。
摘要由CSDN通过智能技术生成


0. 前言

// 可直接跳过本小节
以支持向量积(Support Vector Machine, SVM) 的基本型引入拉格朗日乘子法(Lagrange Multipliers).
min ⁡ 1 2 ∥ ω ∥ 2 s . t .    y i ( ω T x i + b ) ⩾ 1 ,    i = 1 , 2 , … , m . \min \frac{1}{2} \lVert \omega \rVert ^{2} \\ s.t.~~y_{i}(\omega^{T}x_{i} + b) \geqslant 1,~~i=1,2,\dots,m. min21ω2s.t.  yi(ωTxi+b)1,  i=1,2,,m.
这式子本身是一个凸二次规划问题,能直接用现成的优化计算包求解,但是我们可以有更加高效的办法,那就是使用拉格朗日乘子法,其拉格朗日函数就可以写为:
L ( ω , b , α ) = 1 2 ∥ ω ∥ 2 + ∑ i = 1 m α i ( 1 − y i ( ω T x i + b ) ) L(\omega, b, \alpha)=\frac{1}{2} \lVert \omega \rVert ^{2} + \sum_{i=1}^{m}\alpha_{i}(1-y_{i}(\omega^{T}x_{i} + b)) L(ω,b,α)=21ω2+i=1mαi(1yi(ωTxi+b))

1. 最优化问题

拉格朗日乘子法是求解最优化问题中最常见的方法,一般情况下,最优化问题会碰到一下三种情况:

  1. 无约束条件
  2. 有等式约束条件
  3. 有不等式约束条件,像上文中的SVM基本型一样

情况1是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点,将结果带回原函数进行验证即可。

拉格朗日主要处理2、3两种情况,在第3种情况上需要加上KKT条件(Karush-Kuhn-Tucker),本文将主要对拉格朗日进行详细讲述,KKT条件将在另外一篇博文进行讲解。

2. 拉格朗日乘子法

设目标函数为 f ( x ) f(x)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值