题意:
求1~n之间两两gcd的和,gcd(a,b)和gcd(b,a)算一个。
思路:
设gcd(x,n)=i的x的个数为g(n,i),则g(n,i)=phi(n/i)。phi(x)为x的欧拉函数值。
注:这里x<n。
所以采用打表的方法
ans[i]=ans[i-1]+g[i]
g[i]为1~i之间的数与i的gcd之和。
而求g[i]的方法就需要用筛选法了
代码:
#include"cstdio"
#include"cstring"
#include"cmath"
#include"cstdlib"
#include"algorithm"
#include"iostream"
#include"map"
#include"queue"
#define ll long long
using namespace std;
#define MAX 4000007
int phi[MAX];
int g[MAX+10];
ll ans[MAX+10];
void Eorue()
{
phi[1]=1;
int i,j ;
for(i=2; i<MAX; i++)
{
if(!phi[i])
{
for(j=i; j<MAX; j+=i)
{
if(!phi[j])
phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
}
int main()
{
Eorue();
for(int i=1; i<MAX; i++)
{
for(int j=i+i; j<MAX; j+=i)
g[j]+=i*phi[j/i];
}
ans[2]=g[2];
for(int i=3;i<MAX;i++) ans[i]=ans[i-1]+g[i];
int n;
while(scanf("%d",&n),n)
{
printf("%lld\n",ans[n]);
}
return 0;
}