1 方法数据
1.1数据
数据采用1°*1°的NCEP/NCAR的再分析数据,数据格式为grib2。
数据下载地址:FNL1*1
说明:需要用邮箱注册账号,之后按需求下载具体日期的数据,每日4个时次,间隔6hr。
数据变量介绍:可参考
1.2 方法
平台:mac os
python及库安装管理:Anaconda
使用库:pygrib,cartopy,matplotlib,numpy
编辑器:JupyterLab
pygrib库使用方法介绍
参考公众号MeteoAI
cartopy介绍
公众号云台书使
2 绘图方法
一页4图,绘制500风场及高度场、700的风场和相对湿度、850hpa的风场及高度场、海平面气压场。
代码如下:
%matplotlib inline
#库引用
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import pygrib
import cartopy.crs as ccrs
import cartopy.io.shapereader as shpreader
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
#打开文件
path='fnl_20200327_00_00.grib2'
ds=pygrib.open(path)
#数据处理
## 500hpa 数据
hgt_500 = ds.select(name='Geopotential Height', typeOfLevel='isobaricInhPa', level=500)[0]
temp_500 = ds.select(name='Temperature', typeOfLevel='isobaricInhPa', level=500)[0]
u_500 = ds.select(name='U component of wind', typeOfLevel='isobaricInhPa', level=500)[0]
v_500= ds.select(name='V component of wind', typeOfLevel='isobaricInhPa', level=500)[0]
lons=hgt_500.data()[2][0,:]
lats=hgt_500.data()[1][:,0]
hgt_500=hgt_500.data()[0]*0.1 ## 单位换算为dagpm
temp_500 = temp_500.data()[0]-273.15
u_500 = u_500.data()[0]
v_500 = v_500.data()[0]
#网格化 ,生成网格点坐标矩阵
lons, lats = np.meshgrid(lons, lats)
## 700
hgt_700 = ds.select(name='Geopotential Height', typeOfLevel='isobaricInhPa', level=700)[0]
temp_700 = ds.select(name='Temperature', typeOfLevel='isobaricInhPa', level=700)[0]
u_700 = ds.select(name='U component of wind', typeOfLevel='isobaricInhPa', level=700)[0]
v_700= ds.select(name='V component of wind', typeOfLevel='isobaricInhPa', level=700)[0]
rh_700=ds.select(name='Relative humidity', typeOfLevel='isobaricInhPa', level=700)[0]
hgt_700=hgt_700.data()[0]*0.1 ## 单位换算为dagpm
temp_700 = temp_700.data()[0]-273.15
u_700 = u_700.data()[0]
v_700 = v_700.data()[0]
rh_700 = rh_700.data()[0]
## 850
hgt_850 = ds.select(name='Geopotential Height', typeOfLevel='isobaricInhPa', level=850)[0]
temp_850 = ds.select(name='Temperature', typeOfLevel='isobaricInhPa', level=850)[0]
u_850 = ds.select(name='U component of wind', typeOfLevel='isobaricInhPa', level=850)[0]
v_850= ds.select(name='V component of wind', typeOfLevel='isobaricInhPa', level=850)[0]
hgt_850