Android-HAL (三) VNDK

VNDK 是什么

vendor分区native开发需要使用的一系列库

https://source.android.google.cn/docs/core/architecture/vndk?hl=zh-cn#vndk-deprecation-details

为了解耦,system 分区进程不可以加载 vendor 分区中的库

vendor 分区进程仅加载 vendor 分区中的库部分 system 分区中的库

framework 和 vendor 之间按照 HIDL/AIDL 方式,通过 IPC/hwbinder 的方式来通信

现在的问题是 framework 和 vendor 的 modules(包括了 so 和 bin),依赖于同一份公共的库,系统升级时一旦这些库的 ABI/API 发生变化,那么framework 和 vendor 都要同步升级。

所以改造的核心就是 framework modules 和 vendor modules 都依赖的那份公共的库。也就是下图中的那个 Dependencies。这些 Dependencies 就是在引入 Treble 设计之前原先 framework 维护的那组 framework modules


LL-NDK

Low Level NDK,Dependencies 中的一类库 API/ABI 相对稳定的,它们的开发者致力于保持其 API/ABI 稳定性,不会因为 AOSP 的升级而轻易改变 。这都是一些非常底层的基础库,仍然保持一份,framework 和 vendor 共享同一套

libEGL.solibGLESv1_CM.solibGLESv2.solibGLESv3.solibandroid_net.solibc.solibdl.soliblog.solibm.solibnativewindow.solibneuralnetworks.solibsync.solibvndksupport.so 、 libvulkan.so


VNDK |  FWK-ONLY

注意 FWK-ONLY 和 VNDK 这两部分还都在system image 中

Dependencies 中另一些会被 framework 和 vendor 访问。会将其做成两份

如下图,libcamera_metadata.so 这个库既会被 Framework 访问,又会被 vendor (图上是 camera.provider@2.4-impl.so)访问。

那么对于这样的库,在编译时会将其做成两份,

一份给 Framework用,即图中的 libcamera_metadata.so (FWK-ONLY) "core variant"

一份给 vendor用,即图中的 libcamera_metadata.so (VNDK) "vendor variant"

假设需要升级版本,采用的 Framework 和 VNDK 版本都是 26,结合上图

libcamera_metadata.so (FWK-ONLY) 属于 Framework-26 部分

libcamera_metadata.so (VNDK) 属于 VNDK-26,

camera.provider@2.4-impl.so 属于 Vendor-26 部分。那么 vendor module 构建时都是基于 VNDK-26 的,工作正常。

升级系统时,system image升级新的 Framework-27,其中 libcamera_metadata.so (FWK-ONLY) 升级到新的 27,而 VNDK 部分保留 VNDK-26

这样新系统启动后,Vendor-26 部分的 camera.provider@2.4-impl.so 依然会链接 VNDK-26 版本的libcamera_metadata.so (VNDK)

framework 会链接 27 版本的 libcamera_metadata.so (FWK-ONLY)


VNDK-SP

VNDK-SP 是服务于SP-HAL的VNDK中的某几个库

如图libGLES_${chipset}.so 是一个 SP-HAL。surfaceflinger 这个system 进程要进行 GPU 合成的时候,需要访问位于 vendor 分区的 GPU 驱动(libvendor_gpu.so),此时需要通过 libGLES_${chipset}.so 这个 HAL 代理,和普通 HAL 通过 IPC 方式不同,SP-HAL 是将 该 so 直接 dlopen 加载到 surfaceflinger 进程

属于 framework的 surfaceflinger 和 vendor 的 libGLES_${chipset}.so 都要依赖 libcutils.so,同样要遵循 VNDK 的要求,将 libcutils.so 一式两份,其中libcutils.so为 VNDK-SP。

普通 VNDK 中 HAL的service 和 client 之间采用 IPC,所以 libcamera_metadata.so (FWK-ONLY) 和 libcamera_metadata.so (FWK-VNDK) 实际加载在两个不同的进程中,不存在名字冲突的问题。

但是在 VNDK-SP 中 libcutils.so (FWK-ONLY) 和 libcutils.so (VNDK-SP) 两个 so 都会被加载到 surfaceflinger 这个进程中,为了解决加载冲突的问题,Google 又引入了 linker namespace


参考链接

https://www.cnblogs.com/ArsenalfanInECNU/p/17785351.html
https://gitee.com/aosp-riscv/working-group/blob/master/articles/20220923-vndk.md#1-%E5%8F%82%E8%80%83

https://source.android.google.cn/docs/core/architecture/vndk/enabling

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值