(人脸识别2-2)——利用opencv内置分类器检测人脸

利用opencv内置分类器检测人脸

其实opencv里面有内置的已经训练好的人脸分类器,但是仅限与对人脸进行检测,这里我们如果要训练自己的人脸识别分类器的话,要利用这个分类器进行检测和捕捉人脸,然后才能实现识别。

要区分这里的检测和识别是两回事,首先要检测,其实才能是对某个特定人的识别,检测可以调用已有的分类器,但是识别,需要对某个特定人脸进行训练得到特定人的分类器,才能实现识别。

首先看一下在opencv里面的分类器

这里写图片描述

在opencv3.1源码文件夹下,data/haarcascades/
里面存放这各种已经训练好的分类器,有眼睛,人脸,左右眼等等,下面将贴出代码,有兴趣的可以将代码中的分类器替换成其中的分类器,可以得到很多好玩的效果。

下面上代码:

#-*-coding:utf-8 -*-
import  cv2

def facedetect(windowname,camera_id):
#命名和打开摄像头,详情见上一篇
    cv2.namedWindow(windowname)

    cap=cv2.VideoCapture(camera_id)

  classfier=cv2.CascadeClassifier('/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml')#加载分类器,分类器位置可以自行更改  


    color=(0,225,0)#人脸框的颜色,采用rgb模型,这里表示g取255,为绿色框

    while cap.isOpened():
        ok,frame=cap.read()
        if not ok:
            break

        grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)#图像灰度化



faceRects=classfier.detectMultiScale(grey,scaleFactor=1.2,minNeighbors=3,minSize=(30,30))#利用分类器检测灰度图像中的人脸矩阵数,1.2和2分别为图片缩放比例和需要检测的有效点数

        if len(faceRects)>0:#大于0则检测到人脸     
            for faceRect in faceRects:#单独框出每一张人脸
                x,y,w,h=faceRect#获取框的左上的坐标,框的长宽

                cv2.rectangle(frame,(x-10,y-10),(x+w-10,y+h-10),color,2)

        cv2.imshow(windowname,frame)#显示图像

        c=cv2.waitKey(10)
        if c&0xFF==ord('q'):#退出条件
            break

    cap.release()#释放摄像头并销毁所有窗口
    cv2.destroyAllWindows()


if __name__ == '__main__':#主程序
    print ('face detecting... ')
    facedetect('facedetect',0)

代码比较简单,和前面打开摄像头很相似,添加了加载分类器,利用分类器取出图像中的人脸rectangles,然后对每个rectangle进行人脸框长宽坐标获取,并画出框。

画框调用cv2内置函数 rectangle
一些函数的使用方法可以百度或者在pycharm编程时编辑器会提示:

这里写图片描述


【原创文章】转载请注明出处:http://blog.csdn.net/wearge/article/details/77247475

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值