利用opencv内置分类器检测人脸
其实opencv里面有内置的已经训练好的人脸分类器,但是仅限与对人脸进行检测,这里我们如果要训练自己的人脸识别分类器的话,要利用这个分类器进行检测和捕捉人脸,然后才能实现识别。
要区分这里的检测和识别是两回事,首先要检测,其实才能是对某个特定人的识别,检测可以调用已有的分类器,但是识别,需要对某个特定人脸进行训练得到特定人的分类器,才能实现识别。
首先看一下在opencv里面的分类器
在opencv3.1源码文件夹下,data/haarcascades/
里面存放这各种已经训练好的分类器,有眼睛,人脸,左右眼等等,下面将贴出代码,有兴趣的可以将代码中的分类器替换成其中的分类器,可以得到很多好玩的效果。
下面上代码:
#-*-coding:utf-8 -*-
import cv2
def facedetect(windowname,camera_id):
#命名和打开摄像头,详情见上一篇
cv2.namedWindow(windowname)
cap=cv2.VideoCapture(camera_id)
classfier=cv2.CascadeClassifier('/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml')#加载分类器,分类器位置可以自行更改
color=(0,225,0)#人脸框的颜色,采用rgb模型,这里表示g取255,为绿色框
while cap.isOpened():
ok,frame=cap.read()
if not ok:
break
grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)#图像灰度化
faceRects=classfier.detectMultiScale(grey,scaleFactor=1.2,minNeighbors=3,minSize=(30,30))#利用分类器检测灰度图像中的人脸矩阵数,1.2和2分别为图片缩放比例和需要检测的有效点数
if len(faceRects)>0:#大于0则检测到人脸
for faceRect in faceRects:#单独框出每一张人脸
x,y,w,h=faceRect#获取框的左上的坐标,框的长宽
cv2.rectangle(frame,(x-10,y-10),(x+w-10,y+h-10),color,2)
cv2.imshow(windowname,frame)#显示图像
c=cv2.waitKey(10)
if c&0xFF==ord('q'):#退出条件
break
cap.release()#释放摄像头并销毁所有窗口
cv2.destroyAllWindows()
if __name__ == '__main__':#主程序
print ('face detecting... ')
facedetect('facedetect',0)
代码比较简单,和前面打开摄像头很相似,添加了加载分类器,利用分类器取出图像中的人脸rectangles,然后对每个rectangle进行人脸框长宽坐标获取,并画出框。
画框调用cv2内置函数 rectangle
一些函数的使用方法可以百度或者在pycharm编程时编辑器会提示:
【原创文章】转载请注明出处:http://blog.csdn.net/wearge/article/details/77247475