销量预测在商业领域中起着至关重要的作用,对于制定采购计划、库存管理和市场营销等决策具有重要意义。ARIMA(自回归移动平均模型)是一种常用的时间序列分析方法,它可以用来预测未来一段时间内的销量。
本文将介绍如何使用ARIMA模型进行销量预测,并提供相应的完整代码和数据,方便读者进行实践。
首先,我们需要准备销量数据。假设我们有一个包含销售日期和销售数量的数据集,命名为sales_data.csv。下面是一个简单的数据示例:
日期,销售数量
2023-01-01,100
2023-02-<
销量预测在商业领域中起着至关重要的作用,对于制定采购计划、库存管理和市场营销等决策具有重要意义。ARIMA(自回归移动平均模型)是一种常用的时间序列分析方法,它可以用来预测未来一段时间内的销量。
本文将介绍如何使用ARIMA模型进行销量预测,并提供相应的完整代码和数据,方便读者进行实践。
首先,我们需要准备销量数据。假设我们有一个包含销售日期和销售数量的数据集,命名为sales_data.csv。下面是一个简单的数据示例:
日期,销售数量
2023-01-01,100
2023-02-<