在机器学习中,集成学习是一种强大的技术,通过将多个学习器组合在一起,可以提高预测的准确性和鲁棒性。Scikit-Learn是一个流行的Python机器学习库,提供了丰富的集成学习算法和工具。本文将介绍如何使用Scikit-Learn实现集成学习,并提供相应的源代码示例。
首先,我们需要导入所需的库和数据集。在本例中,我们将使用Scikit-Learn自带的鸢尾花数据集作为示例。
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import VotingClassifier
from