基于多阶段内容的图像检索技术解析
1. 特征提取
为了验证匹配技术的有效性,在图像数据库索引中采用了颜色、纹理和形状这些常用特征。下面详细介绍各阶段的特征提取过程和相似度度量方法。
1.1 阶段一:颜色特征提取
在基于内容的图像检索(CBIR)中,颜色是最常用的特征,因为它不受图像旋转、缩放和其他变换的影响。颜色特征通常用颜色直方图表示,计算颜色直方图需要对所选颜色空间进行量化。这里使用HSV颜色空间,因为它在感知上比其他颜色空间更均匀。
计算全局颜色直方图的步骤如下:
1. 将图像从RGB颜色空间转换为HSV颜色空间。
2. 应用非均匀量化技术:
- 对于色调H:
[
H =
\begin{cases}
0, & h \in [340, 20] \
1, & h \in [20, 50] \
2, & h \in [50, 75] \
3, & h \in [75, 140] \
4, & h \in [140, 160] \
5, & h \in [160, 195] \
6, & h \in [195, 285] \
7, & h \in [285, 305] \
8, & h \in [305, 340]
\end{cases}
]
- 对于饱和度S:
[
S =
\begin{cases}
0, & s \in [0, 0.2] \
1, &