用OpenCV实现模糊连接度分割(Fuzzy Connectedness Segment)。
概述
随机性和模糊性是两种不同的不确定性,概率论用于前者,而模糊集合则用于出来后者。由于模糊集合理论能够很好地表述和处理不确定性问题,所以模糊集合理论在图像分割领域获得广泛应用。由于在模糊集合中,图像地一个像素属于一个边界点或某个区域是用一个隶属度表示的,因此这样就可以避免过早地做出明确判断,已便为更高级地处理保留尽可能多的信息。
在传统集合理论中,一个元素或者属于一个集合,或者不属于一个集合。但在实际问题中,往往需要表示元素对集合从属关系的不确定性。1965年,Zadeh提出模糊数学的概念,用来描述这种带有模糊不确定性的现象和事物。传统图像分割方法在面对边界本身就是不清晰的目标物体时,很难准确定义目标物体的区域。一种自然的方法就是用模糊性来描述图像。 在图像处理中,“连接”用来描述图像的拓扑关系及区域的熟悉。1979年,Rosenfeld首先将“连接”扩展到模糊集领域,描述无法精确定义的区域。在此基础上,Upupa提出了基于模糊连接度的图像分割框架。其主要思想是:每两个相邻的像素组成一条连边,将隶属函数应用于此连边,该函数输出一个0到1之间的隶属度值来表示连边属于感兴趣对象的程度,在此基础上建立像素到待分割目标之间的相似关系,此关系称为模糊连接。并依此关系来度量像素对的目标从属程度。
许多图像分割算法都是基于各个区域之间(或区域内)的硬编码关系,模糊算法考虑了各种不确定性,例如噪声,不均匀的照度/亮度/对比度差异.FC已经在医学(和其他)图像中获得了巨大的成功
Udupa和Samarasekera是最早在医学图像中使用FC的人(Graphical Models and Image Processing, 1996).FC Family
• Absolute FC
• Scale-based FC (b-, t-, g-scale based)
• Relative FC
• Iterative Relative FC
• Vectorial FC
• Hierarchical FC
• Model-based FC
基本概念
结合《Fuzzy Connectedness and Object Definition: Theory, Algorithms,
and Applications in Image Segmentation》介绍相关概念。
模糊集,隶属函数和模糊关系
介绍模糊集(Fuzzy Subsets),隶属函数(Membership Function)
和模糊关系(Fuzzy Relation)
模糊邻近关系,模糊数字空间
模糊邻近关系(Fuzzy Spel Adjacency),模糊数字空间(Fuzzy Digital Space)
模糊邻近关系描述的是两个空间元素之间的位置关系。
场景,隶属度场,二值场
场景(Scenes),隶属度场(Membership Scenes),二值场(Binary Scenes)
亲和度
亲和度(Fuzzy Spel Affinities)
亲和度是一个局部关系,考虑了邻近关系和和像素亮度的均匀性。
路径,模糊连接度
模糊连接度
任一路径的连接强度是路径中最弱的链接的亲和度。两点之间的模糊连接度是所有路径强度中最大的。所以模糊连接度是一个全局关系。
(the minimum of affinitieshas been considered to define path strength and the maximum of path strengths has been used to define fuzzy connectedness. )
算法实现
论文中提供了两种方法
单种子点阈值模糊连接度算法
没有阈值的方法
示例演示
用OpenCV实现模糊连接度分割(Fuzzy Connectedness)。完整代码。
运行结果
第一张是ITK官方运行结果
第二张是自己用OpenCV实现的结果
代码实现正确。
参考资料
- FuzzyConnectedness
- http://www.doc88.com/p-4923148921311.html