模糊连接度

用OpenCV实现模糊连接度分割(Fuzzy Connectedness Segment)。

概述

随机性和模糊性是两种不同的不确定性,概率论用于前者,而模糊集合则用于出来后者。由于模糊集合理论能够很好地表述和处理不确定性问题,所以模糊集合理论在图像分割领域获得广泛应用。由于在模糊集合中,图像地一个像素属于一个边界点或某个区域是用一个隶属度表示的,因此这样就可以避免过早地做出明确判断,已便为更高级地处理保留尽可能多的信息。

在传统集合理论中,一个元素或者属于一个集合,或者不属于一个集合。但在实际问题中,往往需要表示元素对集合从属关系的不确定性。1965年,Zadeh提出模糊数学的概念,用来描述这种带有模糊不确定性的现象和事物。传统图像分割方法在面对边界本身就是不清晰的目标物体时,很难准确定义目标物体的区域。一种自然的方法就是用模糊性来描述图像。 在图像处理中,“连接”用来描述图像的拓扑关系及区域的熟悉。1979年,Rosenfeld首先将“连接”扩展到模糊集领域,描述无法精确定义的区域。在此基础上,Upupa提出了基于模糊连接度的图像分割框架。其主要思想是:每两个相邻的像素组成一条连边,将隶属函数应用于此连边,该函数输出一个0到1之间的隶属度值来表示连边属于感兴趣对象的程度,在此基础上建立像素到待分割目标之间的相似关系,此关系称为模糊连接。并依此关系来度量像素对的目标从属程度。
  
许多图像分割算法都是基于各个区域之间(或区域内)的硬编码关系,模糊算法考虑了各种不确定性,例如噪声,不均匀的照度/亮度/对比度差异.FC已经在医学(和其他)图像中获得了巨大的成功
Udupa和Samarasekera是最早在医学图像中使用FC的人(Graphical Models and Image Processing, 1996).FC Family
• Absolute FC
• Scale-based FC (b-, t-, g-scale based)
• Relative FC
• Iterative Relative FC
• Vectorial FC
• Hierarchical FC
• Model-based FC

基本概念

结合《Fuzzy Connectedness and Object Definition: Theory, Algorithms,
and Applications in Image Segmentation》介绍相关概念。

模糊集,隶属函数和模糊关系

介绍模糊集(Fuzzy Subsets),隶属函数(Membership Function)
和模糊关系(Fuzzy Relation)
在这里插入图片描述

模糊邻近关系,模糊数字空间

模糊邻近关系(Fuzzy Spel Adjacency),模糊数字空间(Fuzzy Digital Space)
在这里插入图片描述

模糊邻近关系描述的是两个空间元素之间的位置关系。

场景,隶属度场,二值场

场景(Scenes),隶属度场(Membership Scenes),二值场(Binary Scenes)
在这里插入图片描述

亲和度

亲和度(Fuzzy Spel Affinities)
在这里插入图片描述

亲和度是一个局部关系,考虑了邻近关系和和像素亮度的均匀性。

路径,模糊连接度

在这里插入图片描述

模糊连接度
在这里插入图片描述

任一路径的连接强度是路径中最弱的链接的亲和度。两点之间的模糊连接度是所有路径强度中最大的。所以模糊连接度是一个全局关系。
(the minimum of affinitieshas been considered to define path strength and the maximum of path strengths has been used to define fuzzy connectedness. )

算法实现

论文中提供了两种方法
单种子点阈值模糊连接度算法
在这里插入图片描述

没有阈值的方法

在这里插入图片描述

示例演示

用OpenCV实现模糊连接度分割(Fuzzy Connectedness)。完整代码。

运行结果

第一张是ITK官方运行结果
在这里插入图片描述

第二张是自己用OpenCV实现的结果

在这里插入图片描述

代码实现正确。

参考资料

  • FuzzyConnectedness
  • http://www.doc88.com/p-4923148921311.html
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值