分解文本的神秘艺术:基于语义相似度的文本拆分指南
在数据科学和自然语言处理(NLP)领域,文本拆分是一个重要的技术,它能帮助我们以更有意义的方式处理大型文档。今天,我们将探讨一种高级的文本拆分方法——基于语义相似度的文本拆分。
引言
传统的文本拆分方法通常基于固定字符、单词或句子长度,但这些方法可能会忽略文本语义上的自然边界。通过使用基于语义相似度的文本拆分方法,我们可以在语义上将文本分解为更有意义的部分。这篇文章将详细介绍这一方法,并提供实用的代码示例。
主要内容
安装必要的库
要进行基于语义相似度的文本拆分,首先需要安装以下Python库:
!pip install --quiet langchain_experimental langchain_openai
加载示例数据
我们将以一个长篇文本(如美国国情咨文)为例,来展示如何进行文本拆分。
# 这是我们将要拆分的长文档。
with open("state_of_the_union.txt") as f:
state_of_the_union = f.read()
创建文本拆分器
为了实例化 SemanticChunker
,我们需要指定一个嵌入模型。在这里,我们将使用 OpenAIEmbeddings
。
from langchain_experimental