分解文本的神秘艺术:基于语义相似度的文本拆分指南

分解文本的神秘艺术:基于语义相似度的文本拆分指南

在数据科学和自然语言处理(NLP)领域,文本拆分是一个重要的技术,它能帮助我们以更有意义的方式处理大型文档。今天,我们将探讨一种高级的文本拆分方法——基于语义相似度的文本拆分。

引言

传统的文本拆分方法通常基于固定字符、单词或句子长度,但这些方法可能会忽略文本语义上的自然边界。通过使用基于语义相似度的文本拆分方法,我们可以在语义上将文本分解为更有意义的部分。这篇文章将详细介绍这一方法,并提供实用的代码示例。

主要内容

安装必要的库

要进行基于语义相似度的文本拆分,首先需要安装以下Python库:

!pip install --quiet langchain_experimental langchain_openai

加载示例数据

我们将以一个长篇文本(如美国国情咨文)为例,来展示如何进行文本拆分。

# 这是我们将要拆分的长文档。
with open("state_of_the_union.txt") as f:
    state_of_the_union = f.read()

创建文本拆分器

为了实例化 SemanticChunker,我们需要指定一个嵌入模型。在这里,我们将使用 OpenAIEmbeddings

from langchain_experimental
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值