Batch normalization

传统的神经网络,只是在将样本x输入输入层之前,对x进行标准化处理(减均值,除标准差),以降低样本间的差异性。BN是在此基础上,不仅仅只对输入层的输入数据x进行标准化,还对每个隐藏层的输入进行标准化。

传统方法

传统方法

Batch Normalization

Batch normalization
这里写图片描述
BN 使用(小)批计算的均值和方差对特征进行归一化,以简化优化使非常深的网络能够融合。批量统计的随机不确定性也可以作为一个正则化器,它可以适用于泛化。BN 一直是许多最先进的计算机视觉算法的基础。
BN 要求有足够大的批量才能工作。小批量会导致批量统计数据的估算不准确,并且减少 BN 的批量大小会显著增加模型误差。因此,最近的许多模型都是用较大的批量来进行训练的,这些大批量都是很耗费内存的。

阅读更多

没有更多推荐了,返回首页