如何理解辗转相除法(欧几里得算法)的原理

欧几里得算法,也称为辗转相除法,用于计算两个非负整数的最大公约数。其基本原理是通过不断用较大的数除以较小的数并取余,直到余数为0,最后的除数即为最大公约数。本文通过数学推导证明了这一方法的正确性,并给出了C语言的实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧几里得算法又称辗转相除法,用于计算两个非负整数a,b的最大公约数。表明两个整数的最大公约数是能够同时整除它们的最大的正整数。计算公式gcd(a,b) = gcd(b,a mod b)。
辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数相除余数的最大公约数。 

结合参考资料进行推导演练:

设两数a、b(b<a)的最大公约数为c,c=gcd(a,b),且存在m,n,使得

① a=mc

② b=nc

令r为a除以b的余数,r=a mod b,即存在k使得

③ a=kb+r

求证b与r之间的最大公约数是否也为c(即a与b的最大公约数)

结合式子①②③可得 mc=knc+r,即得式子④ r=mc-knc=(m-kn)c

根据式子②和④ 证明 c为b与r的最大公约数,即证明m-kn与n互质(m-kn与n的最大公约数为1)

可通过反证法

假设存在p使得m-kn=pn,则得式子⑤r=pnc

集合式子②③⑤可得式子

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值