有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
代码
#include <iostream>
using namespace std;
int fun[105],v[105],w[105];
int main()
{
int N,V;
cin>>N>>V;//输入物品组数和背包容量
for(int i=1;i<=N;i++){//循环i个物品组
int s;
cin>>s;//输入第i个物品组的物品数量
for(int j=0;j<s;j++)
cin>>v[j]>>w[j];//输入第i个物品组的s件物品
for(int j=V;j>0;j--){//01背包模型,从大到小循环
for(int k=0;k<s;k++){//第i个物品组所有的可能的选择情况为:不选、选第i组第1件、选第i组第2件...选第i组第s件
if(j>=v[k]){//当k=0时就是比较不选第i组的物品和选第i第1件那个价值大
fun[j]=max(fun[j],fun[j-v[k]]+w[k]);
}
}
}
}
cout<<fun[V]<<endl;//从前i组物品中选,且总体积不超过V的最大价值
return 0;
}