背包九讲之分组背包问题

本文介绍了一种解决背包问题的方法,具体为:给定N组物品和容量为V的背包,每组物品中最多选择一件,目标是在不超过背包容量的情况下,最大化物品的总价值。文章详细解释了输入格式、输出格式及数据范围,并提供了一个示例和相应的C++代码实现。
摘要由CSDN通过智能技术生成

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例:

8

代码

#include <iostream>
using namespace std;
int fun[105],v[105],w[105];
int main()
{
    int N,V;
    cin>>N>>V;//输入物品组数和背包容量
    for(int i=1;i<=N;i++){//循环i个物品组
        int s;
        cin>>s;//输入第i个物品组的物品数量
        for(int j=0;j<s;j++)
            cin>>v[j]>>w[j];//输入第i个物品组的s件物品
        for(int j=V;j>0;j--){//01背包模型,从大到小循环
            for(int k=0;k<s;k++){//第i个物品组所有的可能的选择情况为:不选、选第i组第1件、选第i组第2件...选第i组第s件
                if(j>=v[k]){//当k=0时就是比较不选第i组的物品和选第i第1件那个价值大
                    fun[j]=max(fun[j],fun[j-v[k]]+w[k]);
                }
            }
        }
    }
    cout<<fun[V]<<endl;//从前i组物品中选,且总体积不超过V的最大价值
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值