TensorFlow2+OpenCV实现人像采集与识别
前言
本设计用python语言实现,这里罗列一下整个项目所需要的包(仅供参考)
h5py==2.9.0
Keras==2.3.1
scipy==1.5.2
numpy==1.19.5
scikit-learn==0.24.1
tensorflow==2.1.0
opencv-python==4.5.1.48
人脸识别四个步骤,分别为人脸图像检测和采集,图像预处理,网络搭建和模型训练,人脸图像匹配与识别。
1、检测一张图片中的所有人脸,初次使用需要采集人脸图像保存到本地供模型训练时使用。
2、对于采集的每一张人脸图像,其大小一般都不相同,需要对其处理成相同大小,并对每一张图片进行标注。
3、本项目使用卷积神经网络训练模型,所以首先搭建好网络框架,并使用预先处理好的数据训练模型。
4、输入一张人脸图像,使用训练好的模型识别图像中的人是谁。
1、图像检测和采集
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,用C++语言编写,它提供了很多图像处理和计算机视觉方面的通用算法,本项目中人脸图像的检测和采集都是通过OpenCV实现的,但是这里你并不需要特意去学习OpenCV(其实我会的也不多☺),只需要调用其中的API函数就可以了。
首先是采集人脸图像构成数据集,建立pic_capture.py文件:
import cv2
def face_pic_capture(window_name, camera_id, catch_pic_num, path_name):
CreateFolder(path_name) #[1]
cv2.namedWindow(window_name)
image_set = cv2.VideoCapture(camera_id) #[2]
classifier = cv2.CascadeClassifier(r"D:\anaconda3\envs\tensorflow\Lib\site-packages\cv2\data\haarcascade_frontalface_alt2.xml") #[3]
num = 1 #用于对每张图片命名
while image_set.isOpened(): #[4]
flag, frame = image_set.read() #[5]
if not flag:
break
image_grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faceRect = classifier.detectMultiScale(image_grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) #[6]
if len(faceRect) > 0: # 大于0则检测到人脸
for facet in faceRect: #[7]
x, y, w, h = facet
if w > 100:
img_name = '{}/{}.jpg'.format(path_name, num)
image = frame[y - 10: y + h + 10, x - 5: x + w + 5]
cv2.imwrite(img_name, image) #检测到有人脸的图像帧保存到本地
cv2.rectangle(frame, (x - 5, y - 10), (x + w + 5, y + h + 10), (0, 0, 255), 3) #[8]
font = cv2.FONT_HERSHEY_SIMPLEX
# 显示当前保存了多少张图片,
cv2.putText(frame, "num:{}".format(num), (x + 30, y - 15), font, 1, (0, 250, 250), 4) #[9]
num += 1
if num > catch_pic_num:
break
if num > catch_pic_num:
break
# 显示图像,按"Q"键中断采集过程
cv2.imshow(window_name, frame)
if cv2.waitKey(200) & 0xFF == ord('q'):
break
# 释放摄像头并关闭销毁所有窗口
image_set.release()
cv2.destroyAllWindows()
首先导入opencv模块,cv2中的”2”并不表示OpenCV的版本号。我们知道,OpenCV是基于C/C++的,”cv”和”cv2”表示的是底层CAPI和C++API的区别,”cv2”表示使用的是C++API。
在函数定义中,括号内参数window_name, camera_id, catch_pic_num, path_name分别表示窗口名字,摄像头系列号,采集照片数量和图片存储路径,可以根据自己需要进行修改。咱们