关于tensorflow_conv2d_max_pool卷积池化padding参数为SAME和VALID的区别

26人阅读 评论(0) 收藏 举报


直接上代码理解,作者觉得same会根据具体的步长和核大小去尽量遍历特征图,因为可以填充这个周边的范围。

import tensorflow as tf

x = tf.constant([[1., 2., 3., 5.],

                 [4., 5., 6., 6.],
                 [1,2,3,4],
                 [6,5,8,9]])
x = tf.reshape(x, [1, 4, 4, 1])
valid_pad = tf.nn.max_pool(x, [1, 3, 3, 1], [1, 2, 2, 1], padding='VALID')
same_pad = tf.nn.max_pool(x, [1, 3, 3, 1], [1, 2, 2, 1], padding='SAME')
print(valid_pad)
print(same_pad)
查看评论

tensorflow_conv2d_max_pool卷积池化padding参数为SAME和VALID的区别

卷积:conv2 "VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 ...
  • fireflychh
  • fireflychh
  • 2017-06-26 19:48:57
  • 4393

[AI, 深度学习] tensorflow中padding="SAME"和"VALID"的区别

[AI, 深度学习] tensorflow中padding="SAME"和"VALID"的区别 请参考这里: https://stackoverflow.com/questions/376...
  • H_O_W_E
  • H_O_W_E
  • 2017-08-11 16:28:21
  • 1124

TensorFlow中CNN的两种padding方式“SAME”和“VALID”

在用tensorflow写CNN的时候,调用卷积核api的时候,会有填padding方式的参数,找到源码中的函数定义如下(max pooling函数也是一样): def conv2d(input,...
  • wuzqChom
  • wuzqChom
  • 2017-07-08 11:30:57
  • 12993

卷积神经网络中same padding 和 valid padding

The TensorFlow Convolution example gives an overview about the difference between SAME and VALID :Fo...
  • szj_huhu
  • szj_huhu
  • 2017-06-28 16:59:36
  • 1447

valid 与 same的卷积方式

http://www.jianshu.com/p/05c4f1621c7e 这个简书的作者已经写得很清楚了
  • u012869364
  • u012869364
  • 2017-12-18 11:29:12
  • 166

Tensorflow中padding的两种类型SAME和VALID

padding : SAME和VALID
  • jasonzzj
  • jasonzzj
  • 2016-12-29 16:46:55
  • 17422

tensorflow:SAME VALID padding

http://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in...
  • u012436149
  • u012436149
  • 2016-12-07 13:30:35
  • 1408

keras卷积补零相关的border_mode的选择以及padding的操作

1、keras卷积操作中border_mode的实现 def conv_output_length(input_length, filter_size, border_mode, stride): ...
  • lujiandong1
  • lujiandong1
  • 2017-02-08 00:00:09
  • 6268

【TensorFlow】tf.nn.max_pool实现池化操作

max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考【TensorFlow】tf.nn.conv2d是怎样实现卷积的?  tf.nn.max_pool(...
  • mao_xiao_feng
  • mao_xiao_feng
  • 2016-12-04 14:28:39
  • 28426

padding参数为SAME和VALID的区别

1..讲解 卷积:conv2 "VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 ...
  • wuguangbin1230
  • wuguangbin1230
  • 2018-01-31 16:12:04
  • 128
    个人资料
    等级:
    访问量: 0
    积分: 52
    排名: 0
    文章分类
    文章存档