参考博客:AlexNet | 简说
(4条消息) Caffe学习笔记(二)——AlexNet模型_缄默笔记的博客-CSDN博客
回顾经典: AlexNet, CaffeNet — Winner of ILSVRC 2012 - 腾讯云开发者社区-腾讯云 (tencent.com)
网络结构
Alex网络结构如下:
共有8层,其中前5层convolutional,后边3层full-connected,最后的一个full-connected层的output是具有1000个输出的softmax。
核心思想
其最大的特点是:
-
双核:由于内存受限,网络被分成两条路径,使用两个gpu进行卷积。内部通信只发生在一个特定的卷积层(第三层)。
-
数据扩充:在保持数据标签不变的情况下增大数据集。
-
图像平移和翻转
原始图像为一个大图a,想把一短边缩小到256维得到b,然后在b的中心取256∗256的正方形图片得到c,然后在c上随机提取(256-224=32)224∗224的小图片作为训练样本,然后在结合图像水平反转(x2)来增加样本达到数据增益。
-
调整RGB像素值--可以借鉴到光谱特征中
整个ImageNet训练集的RGB像素值集合中执行PCA,选择前3个特征,再加上一个随机量(满足均值为0,标准差为0.1的高斯分布),即:
-
思考
caffe中的AlexNet和CaffeNet有什么区别?
Caffenet在norm1,pool1,norm2,pool2互换了顺序。
后来在腾讯一个社区里,“需要注意的是,对于CaffeNet的早期版本,池化层和归一化层的顺序是颠倒的,这是偶然的。”
其实本质就是,单核的Alexnet。