Alex网络

参考博客:AlexNet | 简说

(4条消息) Caffe学习笔记(二)——AlexNet模型_缄默笔记的博客-CSDN博客

回顾经典: AlexNet, CaffeNet — Winner of ILSVRC 2012 - 腾讯云开发者社区-腾讯云 (tencent.com)

网络结构

Alex网络结构如下:

 共有8层,其中前5层convolutional,后边3层full-connected,最后的一个full-connected层的output是具有1000个输出的softmax。

核心思想

其最大的特点是:

  • 双核:由于内存受限,网络被分成两条路径,使用两个gpu进行卷积。内部通信只发生在一个特定的卷积层(第三层)。

  • 数据扩充:在保持数据标签不变的情况下增大数据集。

    • 图像平移和翻转

      原始图像为一个大图a,想把一短边缩小到256维得到b,然后在b的中心取256∗256的正方形图片得到c,然后在c上随机提取(256-224=32)224∗224的小图片作为训练样本,然后在结合图像水平反转(x2)来增加样本达到数据增益。

    • 调整RGB像素值--可以借鉴到光谱特征中

      整个ImageNet训练集的RGB像素值集合中执行PCA,选择前3个特征,再加上一个随机量(满足均值为0,标准差为0.1的高斯分布),即:

      I_{xy}=[I_{xy}^R,I_{xy}^G,I_{xy}^B]^T=[p_1,p_2,p_3][\alpha_1\lambda_1,\alpha_2\lambda_2,\alpha_3\lambda_3]^T

思考

caffe中的AlexNet和CaffeNet有什么区别?

Caffenet在norm1,pool1,norm2,pool2互换了顺序。

后来在腾讯一个社区里,“需要注意的是,对于CaffeNet的早期版本,池化层和归一化层的顺序是颠倒的,这是偶然的。”

其实本质就是,单核的Alexnet。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值