复正弦信号、实数信号的DFT
本文将介绍复正弦信号和实数信号的DFT性质,内容包括:
- 复正弦信号的定义以及DFT性质
- 实数信号的定义以及性质
- 代码实例
复正弦信号
首先说明,复正弦信号只是一种数学定义上的信号,在实际生活中没有发现过这种信号
我们先来看一种较为简单且比较有规律的复正弦信号,它的定义如下:
x 1 [ n ] = e j 2 π k 0 n / N n=0,1,2,...,N-1 x_1[n] = e^{j2\pi k_0 n / N} \\ \text{n=0,1,2,...,N-1} x1[n]=ej2πk0n/Nn=0,1,2,...,N-1
其中, e e e是自然常熟,N表示信号的个数。
至于 k 0 k_0 k0,它是很关键的一个参数,我们可以将它理解为 x 1 [ n ] x_1[n] x1[n]信号的周期个数。通常我们只能对一小段信号做DFT,因此需要先对信号截断,如果截断的信号刚好是整数周期,即 k 0 k_0 k0是一个整数,那么信号不发生泄露;相反,如果截断信号不是整数周期,即 k 0 k_0 k0是一个浮点数,那么发现信号泄露。
关于信号泄露,请参看这篇文章 什么是泄露
复正弦信号的DFT
将复正弦信号的定义直接套上DFT的公式可以推出其DFT形式:
X
1
[
k
]
=
∑
n
=
0
N
−
1
x
1
[
n
]
e
−
j
2
π
k
n
/
N
=
∑
n
=
0
N
−
1
e
j
2
π
k
0
n
/
N
e
−
j
2
π
k
n
/
N
=
∑
n
=
0
N
−
1
e
j
2
π
(
k
0
−
k
)
n
/
N
(1)
\begin{array}{l} X_1[k] &= \sum_{n=0}^{N-1} x_1[n] e^{-j2\pi k n / N} \\ &= \sum_{n=0}^{N-1} e^{j2\pi k_0 n / N}e^{-j2\pi k n / N} \\ &= \sum_{n=0}^{N-1} e^{j2\pi(k_0 - k)n / N}\\ \end{array}\tag{1}
X1[k]=∑n=0N−1x1[n]e−j2πkn/N=∑n=0N−1ej2πk0n/Ne−j2πkn/N=∑n=0N−1ej2π(k0−k)n/N(1)
当
k
0
=
k
k_0 = k
k0=k 时,
e
j
2
π
(
k
0
−
k
)
n
/
N
=
e
0
=
1
e^{j2\pi(k_0 - k)n / N} = e^{0} = 1
ej2π(k0−k)n/N=e0=1,因此
X
1
[
k
]
=
∑
n
=
0
N
−
1
1
=
N
,
if
k
0
=
k
X_1[k] = \sum_{n=0}^{N-1} 1 = N, \text{if } k_0=k
X1[k]=n=0∑N−11=N,if k0=k
当
k
0
≠
k
k_0 \neq k
k0=k 时,利用等比数列求和公式可得
X
1
[
k
]
=
1
−
e
j
2
π
(
k
0
−
k
)
n
1
−
e
j
2
π
(
k
0
−
k
)
n
/
N
=
0
\begin{array}{l} X_1[k] &= \frac{1-e^{j2\pi(k_0 - k)n}}{1-e^{j2\pi(k_0 - k)n/N}} \\ &= 0 \end{array}
X1[k]=1−ej2π(k0−k)n/N1−ej2π(k0−k)n=0
即
X
1
[
k
]
=
{
N
,
if
k
0
=
k
0
,
if
k
0
≠
k
X_1[k] = \begin{cases} N, & \text{if $k_0 = k$ } \\ 0, & \text{if $k_0 \neq k$} \end{cases}
X1[k]={N,0,if k0=k if k0=k
这里仔细说明下 X 1 [ 0 ] = 0 X_1[0] = 0 X1[0]=0是怎么来的
- k 0 k_0 k0和 k k k都是整数,那他们的差 k 0 − k k_0-k k0−k也是整数
- 当N是整数时, e j 2 π N = 1 e^{j2\pi N} = 1 ej2πN=1,因此 1 − e j 2 π ( k 0 − k ) n = 0 1-e^{j2\pi(k_0 - k)n} = 0 1−ej2π(k0−k)n=0
- 根据1,2,推出 X 1 [ 0 ] = 0 X_1[0] = 0 X1[0]=0
等比数列求和的推导,可以参考这个公式:
∑
k
=
0
N
z
k
=
{
1
−
z
N
+
1
1
−
z
,
if
z
≠
1
N
,
if
z
=
1
\sum_{k=0}^{N} z^k = \begin{cases} \frac{1-z^{N+1}}{1-z}, & \text{if $z\neq 1$ } \\ N, & \text{if $z = 1$} \end{cases}
k=0∑Nzk={1−z1−zN+1,N,if z=1 if z=1
复正弦信号DFT实例
我们将通过代码来展示复正弦信号的性质,首先生成一段复正弦信号,然后进行DFT,画出结果
import 需要的包
import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import fft
%matplotlib inline
定义生成复正弦信号的函数
def generate_complex_signal(num_sample, k0):
'''
generate a complex signal
num_sample : 信号的个数,即公式中的N
k0 : 周期个数
returns
x : 复正弦信号
'''
n = np.arange(num_sample)
x = np.exp(1j*2*np.pi*k0*n/num_sample)
return x
生成信号,进行DFT,画出结果
当k0是整数时,DFT后的结果与预期的一致
# DFT and plot the results
num_sample = 100
k0 = 20
x = generate_complex_signal(num_sample, k0)
X = fft(x)
plt.figure(figsize=(10,6))
plt.subplot(211)
plt.plot(np.real(x))
plt.subplot(212)
plt.plot(np.real(X))
plt.show()
实数信号
我们生活中遇到的信号都是实数信号,它的定义如下:
x
2
[
n
]
=
A
0
cos
(
2
π
k
0
n
/
N
)
=
A
0
2
(
e
j
2
π
k
0
n
/
N
+
e
−
j
2
π
k
0
n
/
N
)
x_2[n] = A_0 \cos (2\pi k_0 n/N) = \frac{A_0}{2}(e^{j2\pi k_0 n/N} + e^{-j2\pi k_0 n/N})
x2[n]=A0cos(2πk0n/N)=2A0(ej2πk0n/N+e−j2πk0n/N)
额…虽然生活中的信号都是实数信号,但是上面的式子是对实数信号的超高度浓缩版本,是最简单的版本。实际中的信号模型更为复杂。
实数信号的DFT
将实数信号带入DFT等式中
X 2 [ k ] = ∑ n = 0 N − 1 x 2 [ n ] e − j 2 π k n / N = ∑ n = 0 N − 1 A 0 2 ( e j 2 π k 0 n / N + e − j 2 π k 0 n / N ) e − j 2 π k n / N = ∑ n = 0 N − 1 A 0 2 e − j 2 π ( k − k 0 ) n / N + ∑ n = 0 N − 1 A 0 2 e − j 2 π ( k + k 0 ) n / N (2) \begin{array}{l} X_2[k] &= \sum_{n=0}^{N-1} x_2[n] e^{-j2\pi k n / N} \\ &= \sum_{n=0}^{N-1} \frac{A_0}{2}(e^{j2\pi k_0 n/N} + e^{-j2\pi k_0 n/N}) e^{-j2\pi k n / N} \\ &= \sum_{n=0}^{N-1} \frac{A_0}{2}e^{-j2\pi(k-k_0) n / N} + \sum_{n=0}^{N-1} \frac{A_0}{2} e^{-j2\pi(k+k_0) n / N} \\ \end{array}\tag{2} X2[k]=∑n=0N−1x2[n]e−j2πkn/N=∑n=0N−12A0(ej2πk0n/N+e−j2πk0n/N)e−j2πkn/N=∑n=0N−12A0e−j2π(k−k0)n/N+∑n=0N−12A0e−j2π(k+k0)n/N(2)
当 k = k 0 k=k_0 k=k0或者 k = − k 0 k=-k_0 k=−k0时,(2)式中一项为0,另一项为 N A 0 2 N\frac{A_0}{2} N2A0
否则(2)式为0
即
X
2
[
k
]
=
{
N
A
0
2
,
if
k
=
k
0
,
−
k
0
0
,
if
k
≠
k
0
X_2[k] = \begin{cases} N\frac{A_0}{2}, & \text{if $k = k_0, -k_0$ } \\ 0, & \text{if $k \neq k_0$} \end{cases}
X2[k]={N2A0,0,if k=k0,−k0 if k=k0
实数信号DFT实例
我们将通过代码来展示实数信号的性质,首先生成一段复正弦信号,然后进行DFT,画出结果
def generate_real_signal(num_sample, A, k0):
'''
generate real signal
num_sample : 信号的个数,即公式中的N
A : 振幅
k0 : 周期个数
returns
x : 实数信号
'''
hN = num_sample//2
n = np.arange(-hN, hN)
x = A * np.cos( 2*np.pi*k0*n/num_sample )
return x
通过打印出结果,我们发现确实有2个峰值,但是并不是 k 0 k_0 k0和 − k 0 -k_0 −k0
其实只要做一次交换就可以,具体请看代码Y的实现
# DFT and plot the results
num_sample = 100
k0 = 20
A = 0.8
x = generate_real_signal(num_sample, A, k0)
X = fft(fftbuffer)
plt.figure(figsize=)
plt.subplot(311)
plt.plot(np.real(x))
plt.subplot(312)
plt.plot(np.real(X))
hM1 = (num_sample+1)//2
hM2 = num_sample//2
Y = np.zeros(num_sample)
Y[:hM1] = X[-hM1:]
Y[-hM2:] = X[:hM1]
plt.subplot(313)
x_axis = np.arange(-hM1, hM2)
plt.plot(x_axis, np.real(Y))
plt.show()