实数信号和复数信号的频谱

对于学过信号处理的人来说,往往可以脱口而出:实信号是双边谱,复信号是单边谱。但是,若在浅浅地问上一句:为什么?很多人就瞬间语塞,抓耳挠腮,说不出个所以然来。我想,但凡学东西总是要知根知底的好,知其然还要知其所以然。所以本文就把这个大家都很熟悉的结论做一个说明。

1. 实信号频谱

设信号 x ( t ) x(t) x(t)是实信号,其频谱为 X ( ω ) X(\omega) X(ω),根据傅里叶变换有
X ( ω ) = ∫ − ∞ ∞ x ( t ) e − j ω t d t (1) X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt \tag{1} X(ω)=x(t)etdt(1)
根据欧拉公式有: e − j ω t = c o s ( ω t ) − j s i n ( ω t ) e^{-j\omega t}=cos(\omega t)-jsin(\omega t) et=cos(ωt)jsin(ωt),将其带入(1)中有
X ( ω ) = ∫ − ∞ ∞ x ( t ) [ c o s ( ω t ) − j s i n ( ω t ) ] d t = ∫ − ∞ ∞ x ( t ) c o s ( ω t ) d t − j ∫ − ∞ ∞ x ( t ) s i n ( ω t ) d t (2) X(\omega)=\int_{-\infty}^{\infty}x(t)[cos(\omega t)-jsin(\omega t)]dt\\=\int_{-\infty}^{\infty}x(t)cos(\omega t)dt-j\int_{-\infty}^{\infty}x(t)sin(\omega t)dt \tag{2} X(ω)=x(t)[cos(ωt)jsin(ωt)]dt=x(t)cos(ωt)dtjx(t)sin(ωt)dt(2)
进一步地:
X ( − ω ) = ∫ − ∞ ∞ x ( t ) c o s ( ω t ) d t + j ∫ − ∞ ∞ x ( t ) s i n ( ω t ) d t (2) X(-\omega)=\int_{-\infty}^{\infty}x(t)cos(\omega t)dt+j\int_{-\infty}^{\infty}x(t)sin(\omega t)dt \tag{2} X(ω)=x(t)cos(ωt)dt+jx(t)sin(ωt)dt(2)
所以:
∣ X ( ω ) ∣ = ( ∫ − ∞ ∞ x ( t ) c o s ( ω t ) d t ) 2 + ( − ∫ − ∞ ∞ x ( t ) s i n ( ω t ) d t ) 2 = ∣ X ( − ω ) ∣ a r g ( X ( ω ) ) = a r c t a n ( − j ∫ − ∞ ∞ x ( t ) s i n ( ω t ) d t ∫ − ∞ ∞ x ( t ) c o s ( ω t ) d t ) = − a r g ( X ( − ω ) ) |X(\omega)|=\sqrt{(\int_{-\infty}^{\infty}x(t)cos(\omega t)dt)^2+(-\int_{-\infty}^{\infty}x(t)sin(\omega t)dt)^2}=|X(-\omega)| \\ arg(X(\omega))=arctan(\frac{-j\int_{-\infty}^{\infty}x(t)sin(\omega t)dt}{\int_{-\infty}^{\infty}x(t)cos(\omega t)dt})=-arg(X(-\omega)) X(ω)=(x(t)cos(ωt)dt)2+(x(t)sin(ωt)dt)2 =X(ω)arg(X(ω))=arctan(x(t)cos(ωt)dtjx(t)sin(ωt)dt)=arg(X(ω))
从上面的推导结果可见,实信号的频谱在正/负频率轴上幅度相等,角度相反,满足共轭对称性,是一种双边谱。

2. 复信号频谱

如果按照上面的思路,可以假设复信号 x ( t ) = x r ( t ) + j x I ( t ) x(t)=x_r(t)+jx_I(t) x(t)=xr(t)+jxI(t),将其带入傅里叶变换表达式中,但是如果详细去算,发现此时并不是很好从中得出结论。所以本小节我们采用另外一种图形化的简单的理解方法。不失一般地,我们以信号 x ( t ) = c o s ( ω 0 t ) + j s i n ( ω 0 t ) = e x p ( j ω 0 t ) x(t)=cos(\omega_0 t)+jsin(\omega_0 t)=exp(j\omega_0 t) x(t)=cos(ω0t)+jsin(ω0t)=exp(jω0t)为例进行分析。

图1. 复数信号频谱构成示意图

上图给出了单频复信号频谱的构成过程(以频率轴为X轴,实轴为Y轴,虚轴为Z轴构建如图所示的三维坐标系,则每个单频信号的频谱可表示为该坐标系中的一个向量),步骤如下:
(1) 实信号 c o s ( ω 0 t ) cos(\omega_0 t) cos(ω0t)的频谱在上述三维坐标系中表示为两个平行于实轴的等模长向量,满足实信号频谱共轭对称的性质(cos是偶函数,所以正负频率信号完全一样,故正负频率的角度均为0);
(2) 当 ω > 0 \omega >0 ω>0时, s i n ( ω 0 t ) = − c o s ( ω 0 t + π 2 ) sin(\omega_0 t)=-cos(\omega_0 t + \frac{\pi}{2}) sin(ω0t)=cos(ω0t+2π),所以实信号 s i n ( ω t ) sin(\omega t) sin(ωt) ω > 0 \omega >0 ω>0的频谱是实信号 c o s ( ω 0 t ) cos(\omega_0 t) cos(ω0t)频谱逆时针旋转 π 2 \frac{\pi}{2} 2π然后再反向得到。又因为实信号频谱满足共轭对称性,所以信号 s i n ( ω 0 t ) sin(\omega_0 t) sin(ω0t) ω < 0 \omega <0 ω<0的频谱与 ω > 0 \omega >0 ω>0的频谱是反相的,故得到图中所示 s i n ( ω 0 t ) sin(\omega_0 t) sin(ω0t)的频谱;
(3) 一个信号乘以虚数单位j,等效于在复平面上逆时针旋转90°( j = e x p ( j π / 2 ) j=exp(j\pi/2) j=exp(/2),所以乘以j等效于乘以 e x p ( j π / 2 ) exp(j\pi/2) exp(/2)),将信号 s i n ( ω 0 t ) sin(\omega_0 t) sin(ω0t)的频谱逆时针旋转90°即可得到图中 j s i n ( ω 0 t ) jsin(\omega_0 t) jsin(ω0t)的频谱;
(4) 根据欧拉公式,将实信号 c o s ( ω 0 t ) cos(\omega_0 t) cos(ω0t)的频谱和 j s i n ( ω 0 t ) jsin(\omega_0 t) jsin(ω0t)的频谱叠加即可得到信号 e x p ( j ω 0 t ) exp(j\omega_0 t) exp(jω0t)的频谱。可见最终单频复信号频谱只在正频率上有一根谱线,表现为单边谱。由于所有信号均可表示为多个单频信号叠加,所以多频信号或宽带信号的频谱仍然满足上述推导结论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值