深度学习 游戏关卡_强化学习的游戏关卡设计

本文探讨了如何结合深度学习与强化学习来创新性地设计游戏关卡,通过翻译自Medium的文章,揭示了这一领域的最新研究和发展。
摘要由CSDN通过智能技术生成

深度学习 游戏关卡

Procedural Content Generation (or PCG) is a method of using a computer algorithm to generate large amounts of content within a game like huge open-world environments, game levels and many other assets that go into creating a game.

程序性内容生成(PCG)是一种使用计算机算法在游戏中生成大量内容的方法,例如巨大的开放世界环境,游戏级别以及创建游戏所需的许多其他资产。

Today, I want to share with you a paper titled PCGRL: Procedural Content Generation via Reinforcement Learning which shows how we can use self-learning AI algorithms for procedural generation of 2D game environments.

今天,我想与大家分享题为一文PCGRL:程序内容生成通过强化学习 ”,这显示了我们如何能够利用自我学习的人工智能算法程序生成2D游戏环境。

Usually, we are familiar with the use of the AI technique called Reinforcement Learning to train AI agents to play games, but this paper trains an AI agent to design levels of that game. According to the authors, this is the first time RL has been used for the task of PCG.

通常,我们熟悉使用称为“强化学习”的AI技术来训练AI代理玩游戏,但是本文通过训练AI代理来设计该游戏的级别。 这组作者说,这是RL首次用于PCG的任务。

推箱子游戏环境 (Sokoban Game Environment)

Let’s look at the central idea of the paper. Consider a simple game environment like in the game called Sokoban.

让我们看一下本文的中心思想。 考虑一个简单的游戏环境,例如在名为《 推箱子》的游戏中。

Image for post
Sokoban game level.
推箱子的游戏水平。

We can look at this map or game level as a 2D array of integers that represent this state of the game. This state is observed by the Reinforcement Learning agent that can edit the game environment. By taking actions like adding or removing certain element of the game (like solid box, crate, player, target, etc. ), it can edit this environment to give us a new state.

我们可以将地图或游戏级别视为代表游戏状态的2D整数数组。 强化学习代理可以观察此状态,该代理可以编辑游戏环境。 通过采取诸如添加或删除游戏某些元素(如实心框,板条箱,玩家,目标等)之类的动作,它可以编辑此环境以赋予我们新的状态。

Image for post
The PCGRL Framework
PCGRL框架

Now, in order to ensure that the environment generated by this agent is of good quality, we need some sort of feedback mechanism. This mechanism is constructed in this paper by comparing the previous state and the updated state using a hand-crafted reward calculator for this particular game. By adding appropriate rewards for rules that make the level more fun to play, we can train the RL agent to generate certain types of maps or levels. The biggest advantage of this framework is that after training is complete, we can generate practically infinite unique game levels at the click of a button, without having to design anything manually.

现在,为了确保此代理生成的环境具有良好的质量,我们需要某种反馈机制。 本文通过使用手工奖励计算器针对此特定游戏比较先前状态和更新状态来构造此机制。 通过为使关卡更有趣的规则添加适当的奖励,我们可以训练RL代理生成某些类型的地图或关卡。 该框架的最大优点是,训练完成后,我们只需单击一下按钮,便可以生成几乎无限的独特游戏关卡,而无需手动进行任何设计。

Image for post
The three proposed methods for traversing and editing the game environment by the RL agent.
RL代理提出了三种遍历和编辑游戏环境的方法。

The paper also contains comparisons between different approaches that the RL agent can use to traverse and edit the environment. If you’d like to get more details on the performance comparison between these methods, here is the full text of the research results.

本文还包含了RL代理可以用来遍历和编辑环境的不同方法之间的比较。 如果您想获得这些方法之间的性能比较的详细信息,下面是全文的研究成果。

Image for post
Source] Different games tested for level design via the trained RL agent. 来源 ]通过受过训练的RL代理测试了不同游戏的关卡设计。

总体研究方向 (General Research Direction)

While the games that were use in this paper’s experiments are simple 2D games, this research direction excites me because we can build upon this work to create large open-world 3D game environments.

尽管本文实验中使用的游戏是简单的2D游戏,但该研究方向使我很兴奋,因为我们可以在此工作的基础上创建大型开放世界3D游戏环境。

Image for post

This has the potential of changing online multiplayer gaming experience. Imagine, if at the start of every multiplayer open-world game, we could generate a new and unique tactical map every single time. This means we do not need to wait for the game developers to release new maps every few months or years, but we can do so right within the game with AI, which is really cool!

这有可能改变在线多人游戏体验。 想象一下,如果在每个多人开放世界游戏开始时,我们都可以每次生成一个新的独特战术地图。 这意味着我们不需要等待游戏开发人员每隔几个月或几年发布一次新地图,但是我们可以使用AI在游戏中完成发布,这真的很酷!

Thank you for reading. If you liked this article, you may follow more of my work on Medium, GitHub, or subscribe to my YouTube channel.

感谢您的阅读。 如果您喜欢这篇文章,可以关注我在MediumGitHub上的更多工作,或者订阅我的YouTube频道

翻译自: https://medium.com/deepgamingai/game-level-design-with-reinforcement-learning-52b02bb94954

深度学习 游戏关卡

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值