使用深度学习对交通标志进行分类

本文介绍了使用深度学习技术,特别是卷积神经网络(CNN)对交通标志进行分类的方法。通过德国交通标志数据集训练模型,经过图像标准化、建立CNN模型、训练和评估,实现了对43种交通标志的识别,测试准确性达到约80%。
摘要由CSDN通过智能技术生成

Traffic-sign recognition (TSR) technology- a technology by which a vehicle is able to recognize the traffic signs that are placed on the road e.g. “ Turn right ahead”, “Speed limit”, or “Stop” etc.- can be implemented using CNNs. This is important because a prompt response to real-time traffic events can prevent road accidents.This article will explain all the steps taken to design a Deep Learning model to do that.

可以实施交通标志识别 (TSR)技术-一种车辆能够识别道路上交通标志的技术,例如“向右转”,“限速”或“停车”等。使用CNN。 这很重要,因为对实时交通事件做出SwiftReact可以预防道路交通事故。本文将解释设计深度学习模型以实现此目的的所有步骤。

1.导入库和数据集 (1. Importing Libraries and Dataset)

Key python libraries will be imported.

关键的python库将被导入。

Image for post

The dataset used is a German Traffic Sign Dataset. We will use around 34,800 images for training dataset, 12630 images for test dataset and 4410 images for validation dataset.

使用的数据集是德国交通标志数据集 。 我们将使用约34,800张图像作为训练数据集,使用12630张图像作为测试数据集,并使用4410张图像作为验证数据集。

Image for post

2.显示数据集 (2. Displaying the Dataset)

You can display the dataset using the following code:

您可以使用以下代码显示数据集:

Image for post
Image for post

3.图像标准化 (3. Normalization of Images)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值