python 降噪_使用降噪自动编码器重建损坏的数据(Python代码)

本文介绍了如何使用Python中的降噪自动编码器来重建被损坏的数据。通过链接到的资源,读者可以获取具体的Python代码实现。
摘要由CSDN通过智能技术生成

python 降噪

Autoencoders aren’t too useful in practice, but they can be used to denoise images quite successfully just by training the network on noisy images. We can generate noisy images by adding Gaussian noise to the training images, then clipping the values to be between 0 and 1.

自动编码器在实践中并不太有用,但是仅通过在嘈杂的图像上训练网络,它们就可以非常成功地对图像进行去噪。 我们可以通过将高斯噪声添加到训练图像中,然后将值裁剪为0到1之间的方式来生成嘈杂的图像。

“Denoising auto-encoder forces the hidden layer to extract more robust features and restrict it from merely learning the identity. Autoencoder reconstructs the input from a corrupted version of it.”

去噪自动编码器会强制隐藏层提取更强大的功能,并限制其仅学习身份。 自动编码器会从损坏的版本中重建输入。”

A denoising auto-encoder does two things:

去噪自动编码器有两件事:

  • Encode the input (preserve the information about the data)

    编码输入(保留有关数据的信息)
  • Undo the effect of a corruption process stochastically applied to the input of the auto-encoder.

    撤消随机应用于自动编码器输入的损坏过程的影响。

For the depiction of the denoising capabilities of Autoencoders, we’ll use noisy images as input and the original, clean images as targets.

为了描述自动编码器的降噪功能,我们将使用嘈杂的图像作为输入,并使用原始的干净图像作为目标。

Example: Top image is input, and the bottom image is the target.

示例:输入了顶部图像,而底部图像是目标。

Image for post

问题陈述: (Problem Statement:)

Build the model for the denoising autoencoder. Add deeper and additional layers to the network. Using MNIST dataset, add noise to the data and try to define and train an autoencoder to denoise the images.

为降噪自动编码器构建模型。 向网络添加更深的层。 使用MNIST数据集,向数据添加噪声,并尝试定义和训练自动编码器以对图像进行降噪。

解: (Solution:)

Import Libraries and Load Dataset: Given below is the standard procedure to import the libraries and load the MNIST dataset.

导入库和加载数据集:以下是导入库和加载MNIST数据集的标准过程。

import torch
import numpy as np
from torchvision import datasets
import torchvision.transforms as transforms# convert
堆叠式自动降噪编码器(Stacked Autoencoder)是一种用于无监督学习的神经网络模型,用于特征提取和降噪处理。下面是使用python实现的堆叠式自动降噪编码器的代码: ```python import numpy as np import tensorflow as tf # 定义堆叠式自动降噪编码器类 class StackedAutoencoder: def __init__(self, num_layers, hidden_units): self.num_layers = num_layers self.hidden_units = hidden_units def build_model(self, input_dim): self.model = tf.keras.models.Sequential() # 添加隐藏层和输出层 for i in range(self.num_layers): if i == 0: # 第一层的输入维度为输入数据的维度 self.model.add(tf.keras.layers.Dense(self.hidden_units[i], input_dim=input_dim, activation='relu')) else: # 后续层的输入维度为上一层的输出维度 self.model.add(tf.keras.layers.Dense(self.hidden_units[i], activation='relu')) # 最后一层的输出维度为输入数据的维度 self.model.add(tf.keras.layers.Dense(input_dim, activation='sigmoid')) # 编译模型 self.model.compile(optimizer='adam', loss='binary_crossentropy') def train(self, input_data, epochs=10, batch_size=32): self.model.fit(input_data, input_data, epochs=epochs, batch_size=batch_size) def denoise(self, input_data): denoised_data = self.model.predict(input_data) return denoised_data # 示例用法 input_data = np.random.rand(1000, 100) # 假设有1000个样本,每个样本的维度为100 autoencoder = StackedAutoencoder(3, [50, 30, 20]) # 设置3层自动降噪编码器,隐藏单元分别为50, 30和20个 autoencoder.build_model(input_data.shape[1]) # 根据输入数据的维度构建模型 autoencoder.train(input_data, epochs=100, batch_size=32) # 训练模型 denoised_data = autoencoder.denoise(input_data) # 对输入数据进行降噪处理 ``` 以上的代码定义了一个`StackedAutoencoder`类,可以根据指定的层数和隐藏单元个数构建模型,并进行训练和降噪处理。使用时,先创建一个`StackedAutoencoder`对象,然后调用`build_model`方法构建模型,再调用`train`方法进行训练,最后调用`denoise`方法对输入数据进行降噪处理。示例中使用随机生成的输入数据进行了演示。请根据实际需求进行相应的参数设置和数据输入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值