一个数据包的旅程
With coming fast tech industry changes and robotic innovations, Data Science is one of the great niches to start learning. If you are passionate about data and how to use it, this article will help you to understand how to learn a Data Science specialty to transform your interest into a high-paid profession.
随着技术行业的快速变化和机器人创新的到来,数据科学是开始学习的最重要的领域之一。 如果您对数据及其使用方法充满热情,那么本文将帮助您了解如何学习数据科学专业,从而将您的兴趣转变为高薪职业。
数据科学新手学位或证书 (Degree or Certificate for Data Science Newbie)
You might think that it is time to get a tech degree or certificate as your first step. In reality, you don`t need this. Why? Your knowledge and what you can do will be a major factor in your interview, not education.
您可能认为现在是时候获得技术学位或证书了。 实际上,您不需要此。 为什么? 您的知识和能力将是面试的主要因素,而不是教育。
Yes, for sure it is good to have a tech degree or certificate, but this won`t help you to land your job only because you have a diploma. So think about certificate/degree as an optional item. It is good to have, but definitely not the first thing you need to start your Data Scientist path from.
是的,拥有技术学位或证书肯定是件好事,但这不会仅因为拥有文凭而帮助您找到工作。 因此,将证书/学位视为可选项目。 拥有它是一件好事,但绝对不是您要从中开始Data Scientist路径的第一件事。
On the other hand, if you decided to dedicate your time to a deep learning path and selected university or course helped you to get the knowledge that you actually will use, it is a totally different thing.
另一方面,如果您决定将时间投入到深度学习道路上,并且所选的大学或课程帮助您获得了实际使用的知识,那是完全不同的事情。
So my general advice will be to start a theory or practical learning path. If you have a lot of time and money, get courses or even a degree. Remember that company won`t ask you about your educational documents very detailed. Your answer will be generic: “Yes, I do have a degree/certificate” or “No, I don`t have a degree/certificate”.
因此,我的一般建议是开始理论或实践学习的道路。 如果您有很多时间和金钱,那么可以上课程甚至获得学位。 请记住,公司不会询问您非常详细的教育文件。 您的回答将是通用的:“是的,我确实有学位/证书”或“否,我没有学位/证书”。
Also, 2020 is a year of doing everything remotely. I believe you can get everything online rather than go learning onsite. It is safer in our time and more effective.
此外,2020年是远程完成所有工作的一年。 我相信您可以将所有内容都在线获得,而不必去现场学习。 它在我们时代更安全,更有效。
您需要学习的技能 (Skills You Need to Learn)
The very base of your learning path are Python, SQL, Machine Learning, and Statistics. This knowledge is high-level, so let`s review each of them separately.
您学习路径的基础是Python,SQL,机器学习和统计。 这些知识是高层次的,因此让我们分别回顾每个知识。
Python (Python)
This will be your first programming language to learn. And this is very exciting! Why? Because Python is a general-purpose programming language. It supports a lot of frameworks and libraries. It is simple and fast in learning. Also, you will save a lot of your time writing in Python instead of Java.
这将是您学习的第一门编程语言。 这非常令人兴奋! 为什么? 因为Python是一种通用编程语言。 它支持许多框架和库。 学习简单,快速。 同样,您将节省大量时间来编写Python而不是Java。
If you want to learn more why I give so high priority to Python, I have a separate article on Medium with all details:
如果您想了解更多为什么我为什么要如此优先考虑Python,那么我有一篇有关Medium的文章,其中包含所有详细信息:
You need to learn and practice simultaneously. Try to build your learning path with projects to include in your portfolio. It means that once you get enough theory knowledge, include as much practical steps as possible. By this, you will be able to write in pure Python very soon. This covers basic syntax, functions, control flow, loops, modules, and classes.
您需要同时学习和练习。 尝试通过包含在您的投资组合中的项目来构建学习路径。 这意味着一旦您掌握了足够的理论知识,就应包括尽可能多的实际步骤。 这样,您将能够很快用纯Python编写代码。 这涵盖了基本语法,功能,控制流,循环,模块和类。
SQL (SQL)
To work with databases, you need to learn SQL. This skill allows you to extract and interact with data. There are different SQL types, but you need to learn basic analytical SQL as a newbie.
要使用数据库,您需要学习SQL。 此技能使您可以提取数据并与之交互。 SQL有不同的类型,但是您需要作为新手学习基本的分析SQL。
You can use W3School to learn from it. It has a basic theory that you need. And again, it is better to learn theory and practice as frequently as you can. Remember, any tech industry requires a lot of practical experience. If you stop your practice, you will lose your knowledge really fast.
您可以使用W3School来学习。 它具有您需要的基本理论。 同样,最好尽可能多地学习理论和实践。 请记住,任何技术行业都需要大量的实践经验。 如果停止练习,您将很快失去知识。
SQL related questions are popular for Data Scientist in the interview. That`s why it is another reason to learn SQL and answer interview questions confidently and fast.
与SQL相关的问题在数据科学家中很受欢迎。 这就是为什么学习SQL并自信而快速地回答面试问题的另一个原因。
统计 (Statistics)
And you should learn Statistics for sure. The main things to concentrate attention on probability are distributions, statistical significance, hypothesis testing, and regression.
而且您应该确定学习统计学。 关注概率的主要方面是分布,统计显着性,假设检验和回归。
You can divide your Stats learning into a few steps:
您可以将统计学习分为以下几个步骤:
Core Statistics Concepts
核心统计概念
- Experimental design 实验设计
- Regression modeling 回归建模
- Data transformation 数据转换
2. Bayesian Thinking
2. 贝叶斯思维
3. Machine Learning
3. 机器学习
Check UCI Machine Learning Repository. You can use their data for your personal projects. It is possible to deploy a model as well. Build your projects and store them on Github. This is the best way to learn and build a personal portfolio.
检查UCI机器学习存储库 。 您可以将其数据用于个人项目。 也可以部署模型。 构建您的项目并将其存储在Github上。 这是学习和建立个人档案袋的最佳方法。
机器学习 (Machine Learning)
I assume that the most popular methodologies for Data Scientists come from Machine Learning. It is different from other computer decisions because it includes prediction. The computer is able to use algorithms to predict results with its own data.
我认为数据科学家最流行的方法学来自机器学习。 它与其他计算机决策不同,因为它包括预测。 该计算机能够使用算法通过其自己的数据预测结果。
If you want to build and deploy products in the future, ML is definitely something to learn in the beginning. Among all Data Scientist functions, there is a software engineer, which requires ML knowledge.
如果您想将来构建和部署产品,则ML绝对是一开始要学习的东西。 在所有数据科学家功能中,有一个软件工程师,需要ML知识。
As you can see Data Scientist is not only the person who building models but also a person who run and support them. It means that she/he is similar to a software engineer.
如您所见,数据科学家不仅是构建模型的人,而且还是运行和支持模型的人。 这意味着她/他类似于软件工程师。
一些有用的链接 (A few Helpful Links)
Here is a list that will help you:
以下列表将为您提供帮助:
Khan academy — to learn technical materials
汗学院 -学习技术资料
Codeacedmy Python Course — this is a great course for Python learning
Codeacedmy Python课程 —这是一门很棒的Python学习课程
An Introduction to Statistical Learning — Learn Stats from here.
统计学习简介 -从此处了解统计信息。
Data Elixir: Data Science news and resources
数据药剂 :数据科学新闻和资源
重要的提示 (Important Note)
While you are learning Data Science, contribute to open source projects. You can find a lot of Python libraries, that need community help. It is a good way to:
在学习数据科学时,请为开源项目做出贡献。 您可以找到很多需要社区帮助的Python库。 这是执行以下操作的好方法:
- practice your skills; 练习你的技能;
- get instant feedback and help from other people; 即时获得他人的反馈和帮助;
- be involved in real projects; 参与实际项目;
- open-source projects can organize a hackathon and you can participate there; 开源项目可以组织黑客马拉松,您可以在那里参加。
- you learn from others; 你向别人学习;
- your portfolio has a real project. 您的投资组合有一个真实的项目。
结论 (Conclusion)
Data Scientist is a very innovative and highly paid specialty. If you want to learn it fast, I have shared helpful steps that will make you successful in your learning journey. I hope I have inspired you to become a Data Scientist and you will use my tips to start your learning journey to become a Data Scientist.
数据科学家是一个非常创新且高薪的专业。 如果您想快速学习它,我共享了一些有用的步骤,这些步骤将使您在学习过程中取得成功。 希望我启发了您成为一名数据科学家,您将使用我的技巧开始学习之旅,成为一名数据科学家。
翻译自: https://towardsdatascience.com/how-to-learn-data-science-and-start-your-amazing-journey-7de3f7757157
一个数据包的旅程