假设检验_数理统计|笔记整理(A)——假设检验进阶:似然比视角再看假设检验...

这篇博客深入探讨了假设检验问题,从似然比的角度出发,讲解了一致最优势检验 (UMPT)、Neyman-Pearson准则及其应用。文中详细阐述了单调似然比分布族的单边检验和单参数指数族分布的双边检验概述,通过实例展示了如何利用似然比进行统计判决。内容涵盖了统计判决函数、第一类和第二类错误、UMPT的定义和N-P准则的证明,以及相关检验的效力问题。
摘要由CSDN通过智能技术生成

2aeac62739027fe9ede27fec75cb7179.png

上一节笔记传送门:数理统计|笔记整理(9)——假设检验初步:势,显著性检验,拟合优度检验,正态性检验

下一节笔记传送门:数理统计|笔记整理(B)——似然比检验,区间估计:置信区间,容忍区间概念与计算

——————————————————————————————————————

大家好!

这一节我们继续来看假设检验问题,但是我们会从另外一个视角来看。如果我们从似然比这个量来看,会不会使得结果有什么不一样呢?事实上,看似完全不一样的推导方法,在很多情形下能够得到完全相同的结果,这也是我们这一节所介绍的内容。

那么我们开始吧。

目录

  • 引入
  • 一致最优势检验 (UMPT)
  • Neyman-Pearson准则
  • 单调似然比分布族的单边检验
  • 单参数指数族分布的双边检验概述

引入

如果我们通过统计判决的思想思考假设检验,其实它就是考虑构造判别函数的问题。事实上假设检验要做的决策也就两个——接受原假设,拒绝原假设。所以我们的判别函数其实也就只需要两个值,也就是1和0。依照这个,我们先给出检验函数的定义。

Definition 1: Test Function 定义
​为假设检验
​的检验函数。其中
​表示抽样​
的时候,否定原假设的概率。若对任意的​
,有​
,那么称
​为假设检验问题的水平为​
的检验。

很显然,这样的定义就和否定域的概念完全等价。如果

​,那么
​,也就是说否定原假设的概率为1,这就是否定域的意思。

在这样的定义下,你也能看出来,​

就是我们关心的
损失函数,而它也正好就是下面的表达式

这也就恰好对应上了上一节所说的两类错误。

一致最优势检验 (UMPT)

我们在上一节说了,我们希望的假设检验实际上是针对第一类错误的检验。也就是说我们希望一个检验的第一类错误能够小于一个阈值​。但是我们很显然也并不希望第二类错误太大,所以我们考虑了这么一种检验——一致最优势检验,它的定义如下。

Definition 2: Uniform Most Powerful Test 对于假设检验问题
​和我们给定的水平
​,如果检验​
满足​
,那么就称​
为假设检验问题的一个水平为
​的检验。记​
,若存在​
,使得
​,则称​
为假设检验问题的水平为
​的一致最优势检验。

一般我们称呼它为UMPT。这个定义用人话来说,就是要先考虑一个检验,它的第一类错误要

​,然后在这个基础上,考虑
使得第二类错误最小的一个检验函数
​。

从统计判决函数的观点来看,这一系列统计推断问题实质上是一脉相承的。幸运的是我们在第五节已经通过Rao-Blackwell定理,说明了统计推断的最优解为充分统计量的函数。为了加深印象,我们在这里再写一遍。

Lemma 1: 设​
为充分统计量,任意给定一个检验​
,必定存在一个检验​
,它为充分统计量的函数,并且与
有相同的功效。

简单说明一下。设

​,那么这个时候显然这个量为​
的函数,与​
无关(注意​
的充分统计量含义,不明白的话参考第三节)。又注意到

所以功效也相同,这就证明了结论。

Neyman-Pearson准则

下面我们进入我们的重点——N-P准则。为了简单起见,我们先从最简单的情况开始说起,也就是

在这一部分提到的假设检验问题,均是指上面这一个。

首先我们引入似然比,也就是

​,也就是两个似然函数的比值(所以对应的是两个
样本联合概率密度)。我们在极大似然估计里介绍过,如果这个样本出现了,那么就说明在这个参数下,这个样本出现的概率应该比较大,也就是说,总体的似然函数
​应该很大,如果​
符合实际情况的话。这样的话,对于似然比来说,如果比较大,就说明
​比
​要大很多,也就说明​
才是更符合实际情况的,也就是说备择假设才是应该被推崇的。在这个逻辑下,

就很自然的成为了拒绝域的形式,而我们只需要根据

​来确定​
即可。

根据似然比来判断就会对应有三种情况:

​,无论是​
,还是
​,我们都会对应为显著性检验中的拒绝域和接受域,但是​如何判断
?事实上,有的书上会把接受域这一部分定义为
保留域,也就是说这一个部分会被划为接受域。所以在我们之后的假设检验问题中,多半它不会对我们之前的理解产生影响,但是在这一节的所有分析中,我们都需要对它足够的重视。

这也是N-P准则的基本逻辑,我们把它重新写一遍。

Theorem 1: Neyman-Pearson 设​
为离散或连续型密度函数,那么对于假设检验问题
​,我们有
(1) 存在性,定义​
,那么对于任意给定的
​,一定存在​
,使得
​。
(2) 最优性或充分性,(1)中的检验函数为假设检验问题的UMPT。 (3) 唯一性或必要性,若​
为问题的最优势检验,那么一定有
​,且若​
,那么有
​。

这是一个非常复杂的定理,我们一个一个来证明。

我们首先来看第一条。

​,那么注意到它实际上代表着检验函数在
​,也就是
原假设情况下的势(我们在第9节介绍过有关势的概念)。所以就有

关键的一步来了!设随机变量

​的分布函数为
​,那么实际上,就相当于

所以可以考虑设​

为分布函数​
的​
分位数,这样的话​
的取值就根据
​这个点的连续性来考量了。如果这个点是一个连续点,那么
​的取值就是任意的。如果非连续,也没有关系,因为在这个情况下,​
都已经确定下来,所以解方程就好,这个时候​

下面我们看第二条。回顾一下UMPT的概念,你可以看出第二条实质上就是要证明,对任意的​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值