++代码实现 感知机的原理_Sampled Softmax训练方法数学原理思考以及代码实现

0fa5332597d73e47a1cb3b04c661d16b.png

@[toc]

前言

夜小白:基于表征(Representation)文本匹配、信息检索、向量召回的方法总结(用于召回、或者粗排)​zhuanlan.zhihu.com
05b5a6b5a6d0b521fd60211ee3bcd869.png
夜小白:文本匹配开山之作-DSSM论文笔记及源码阅读(类似于sampled softmax训练方式思考)​zhuanlan.zhihu.com
00e9c98840bb393886a707a8ce3be307.png

前面两篇关于文本匹配的博客中,都用到了Sampled-softmax训练方法来加速训练,Sampled-softmax简单点来说,就是通过采样,来减少我们训练计算loss时输出层的运算量。从第一篇博客中的不知其然,到后面看到DSSM代码中Sampled softamax的知其然,这篇博客目的是在知其所以然,从Sampled softmax的数学原理思考,为什么DSSM中的训练代码可以这样写,代码还能怎么改进。

这段时间也一直在思考,如何才能不随波逐流,如何才能成为一名独当一面的算法工程师,我想对于一个问题的浅尝辄止肯定是远远不够的,不仅要知其然还要知其所以然,光是读懂这几篇论文是不够的,进一步的要理解代码工程实现,更进一步,去理解代码背后的数学原理,为什么代码这样做一定能保证结果正确或者收敛,了解了这些,我们才能够根据自己的想法去做优化,我想对于现在日益成熟的深度学习,难的可能不是如何实现,而是对于自己的实际场景去调整优化。

上面有点扯远了,回归正题,这篇博客主要基于Tensorflow官方对于Sampled softmax文档,建议大家有问题不懂的时候多看官方文档,写的非常通俗易懂,下面我就说说自己对Sampled Softmax数学原理的理解。

What is Candidate Sampling Tensorflow 官方文档

什么是Sampled Softmax

1、logits与softmax

当我们做分类问题时,假设我们需要分类的类别数为

,那么我们做法通常如下,假设我们的输入为
  1. 神经网络最后一层输出层神经元个数为
    ,每个神经元输出分别表示
    各个类别的logits, 这里的 logits 其实代表的就是各个类别未经归一化的概率分布(也就是加起来不为1),网络就是学习出一个映射
  2. 将上述输出的logits作为softmax的输入进行归一化操作,softmax的输出则是表示各个类别上的概率分布
  3. 根据这个概率分布计算损失函数,如交叉熵损失

还是采用之前博客中的Query-Doc Softmax作为说明,从logtis进行softmax归一化公式如下:

f88a740e6e931a6df01ed29c402bbb9e.png
  • 表示我们的输入,
    表示我们的模型,
    即是给定
    情况下,输出类别为
    logits
  • 我们注意分母中
    即为所有文档集合,也就是我们的总类别数

这个公式的具体解释可以参考之前的两篇博客,下面分析一下上面这个公式,下面是重点:

  • 当我们类别数非常大时,也就是
    非常大时,那么我们分母的计算量就会非常大,因为需要在整个类别全集上求和。比如假设我们有100W个文档,那么如果我们不做任何处理,
    对于每个Query,分母中我们就要计算对这100W个文档的logits,然后求和进行归一化,这样的训练速度我们是不能接受的。Sampled Softmax思想就是,从全部类别集合
    中采样出一个子集,比如100个,然后在子集上计算logits并进行softmax归一化
  • 我们如果对每个类别logits加上一个与类别无关的常数,结果将不会变化。这个很好理解,当我们对每个logits均加上同一个常数K,那么分子分母可以约去这个常数K,结果不变 *
  • 分母其实是一个归一化因子,如果看过PRML同学应该熟悉,有点类似于指数族分布中的partition function,分母与类别无关,因为分母中对整个类别集合进行了求和,给定输入后,分母归一化因子也就确定了。

从上面分析可以知道,我们的关键词是logitssoftmax归一化logits本质上就是未归一化的概率,softmax目的就是计算归一化因子(分母),对logtis进行归一化,从而得到一个概率分布。问题就在于需要对整个类别集合

计算
logtis并求和,当类别集合比较大时(比如上面的Query-Doc预测,以及语言模型训练),计算量会非常大。

2、Sampled Softmax

Sampled Softmax的核心思想就在于 Sampled,既然类别全集太大,那么能不能采样一个类别子集,然后在计算在子集上的logtis然后进行softmax归一化呢?假设我们类别全集为

,输入为
,其中
就是我们的输入类别标签,那么我们可以在
上随机采样一个子集
,并且与我们的输入类别
,共同组成候选类别子集

我们在训练模型时,只要在这个采样出来的

上计算
logitssoftmax就可以了,大大减少了计算量,加快训练过程。现在问题是:
  • *当我们进行采样之后,各个类别logits应该如何计算,和使用类别全集时的logtis有什么对应关系?

Sampled Softmax背后的数学原理

从上面可以看出,当我们进行采样后,按理来说logtis计算方法也需要改变,这样才能最后得到正确的概率分布。前方公式预警!!!!

1、数学符号约定

  • 表示我们的一个训练样本,
    为输入模型的特征,
    为标签,目标类别
  • 给定输入
    ,输出类别为
    的条件概率
  • 给定输入
    ,输出类别为
    logtis,这里
    其实表示的就是我们的模型
  • 类别全集
  • 采样函数,给定输入
    ,采样出类别
    的概率
  • 采样出来的类别子集

以上符号如果没有特殊说明,都表示是在类别全集上进行计算

2、logits与概率之间的关系

e4255caad9fba731ad7c2496892a6d57.png

其中

表示与类别
无关的常数,其实就是
softmax计算出来的分母。推导也很简单:
两边同时取
,可以得到

最后将

移项则可以得到上式。即
logits可以写成“
”这种形式。为什么要推导出这个关系呢,且听后面分解~

3、采样出类别子集

的概率表示

e682682d6307687a6fb51e6a43a8d71c.png

这里推导也很简单,当

时概率为
,否则为
这里假设每次采样都是
独立同分布(iid),所以我们把每个类别概率乘起来就可以了

4、计算采样后类别子集

上的概率分布表示

重点来了!前面都是铺垫,我们最终的目的是计算给定输入

,在采样后的类别子集
概率分布表示,也就是
进一步,由于在2中,
logits与概率之间的关系,我们已经得到,所以我们就可以得到采样后 logits的正确表示形式啦~,我们假设
为采样子集
和我们目标类别
的并集

那么在给定类别子集
,输入
条件下,输入类别
的概率
计算推导如下,首先使用贝叶斯公式:

dd5f30d6bc2c3d9a731a9de3a8599ccc.png

上面的推导就是简单的贝叶斯公式。我们分析一下推导结果:

  • 这个就是在类别全集情况下,给定输入
    ,输出类别为
    的条件概率
  • 这个概率就是给定类别
    ,输入
    情况下,采样出类别子集
    的概率,这个计算方式已经在3中,
    采样出类别子集
    的概率表示,推导出来如下

fbe8baa81a704d12d7407ae6ce6a1c15.png
  • 这其实是个和输出类别
    无关的常量,可以视为const

综上,下面

计算结果如下:

0a57bceff14eaeb6e42f6822ee9b1ddb.png

其中

为与类别
无关的常数,我们对上式两边取
,则有:

77c18839a76745fb656de8f3ebd9887c.png

结果已经跃然纸上,

是我们自己选取的采样函数,通过这个式子我们已经得到了采样后类别子集
和类别全集
上概率分布的关系

5、采样后类别子集

上的
logits和原始 logits关系

终于要到最后一步了,我们已经知道了采样后类别子集

和类别全集
上概率分布的关系,这时我们只需要利用2中的结论,
logits与概率之间的关系,就可以得出采样后类别子集
上的
logits和原始 logits关系,推导如下:

带入上面推导出来的公式:

其中与类别

无关的常数项都可以合并,则有:

大功告成!上面的公式就是我们进行采样后的logtis与原始logits关系,具体的用法如下:

  • 通过
    对类别进行采样,得到一个类别子集
  • 模型对采样类别子集
    中的类别分别计算
    logits(这样就不用在类别全集计算logits了),这里得到的其实是
  • 对于计算出来的
    ,减去
    ,就得到了我们采样后子集的
    logits
  • 使用
    作为
    softmax输入,计算概率分布以及loss进行梯度下降

DSSM Sampled Softmax 分析

从上面分析可以得到:

我们选取不同的采样函数

,那么结果也会不同,比如Tensorflow中有如下采样方式:
  • tf.nn.log_uniform_candidate_sampler,按照 log-uniform (Zipfian) 分布采样。

56fdc63963109c959769d80ef8289c7a.png
  • tf.nn.learned_unigram_candidate_sampler 按照训练数据中类别出现分布进行采样。具体实现方式:1)初始化一个 [0, range_max] 的数组, 数组元素初始为1; 2) 在训练过程中碰到一个类别,就将相应数组元素加 1;3) 每次按照数组归一化得到的概率进行采样。

上述采样方式都和输入

相关,而如果我们选择随机采样,那么选择每个类别的概率都相等,也就是说
对于每个类别来说都一样,可以看做一个常数,并到后面常数项中,所以有:
而上面分析过,
logits加上或者减去一个常数,对 softmax结果并没有影响,所以可以用 原始logits代替采样后的logits。所以DSSM代码中,构造子集后直接计算 logits然后做 softmax结果也是正确的,代码如下:
with tf.name_scope('Loss'):
    # Train Loss
    # 转化为softmax概率矩阵。
    prob = tf.nn.softmax(cos_sim)
    # 只取第一列,即正样本列概率。相当于one-hot标签为[1,0,0,0,.....,0]
    hit_prob = tf.slice(prob, [0, 0], [-1, 1])
    loss = -tf.reduce_sum(tf.log(hit_prob))
    tf.summary.scalar('loss', loss)

总结

理论指导实践,代码中每一步都是有理论依据的,所以只有弄懂其背后的数学原理才能各个算法活学活用。以上也都是我的个人理解,难免有错,欢迎大家和我讨论,一起学习,一起进步~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值