3.0 前言
本文是YOLOv3系列第3篇,记录YOLOv3如何训练自己的模型。
YOLOv3系列第2篇:YOLOv3的应用
建议参考github上作者的说明,写的十分清楚。
参考的网页:
3.1 配置cfg文件
3.1.1 复制yolov3.cfg(...\darknet-master\cfg目录下)文件并重命名为yolo-obj.cfg(或者其他名字,只要各处对应即可),复制到darknet.exe相同目录下(或者其他目录,输入命令时对应即可)。
3.1.2 修改batch=64,subdivisions=8。
3.1.3 修改classes和filters,共三处。如果检测两类物体,则classes=2,
filters=(classess+5)*3=(2+5)*3=21。
3.1.4 上述修改具体行数参考github即可。
3.2 配置obj.name文件和obj.data文件(命名也可以为其他,只要对应即可)
新建obj.names文件和obj.data文件,放在目录...\darknet-master\build\darknet\x64\data下。
obj.names内容(每行一个类的名字,名字随便写,随时可以改)
obj.data内容(valid是为了训练完成后测试模型效果)
3.3 准备图片和对应的标签文件
每张图片对应一个同名txt文件,txt文