yolov3模型识别不出训练图片_YOLOv3训练自己的模型

这篇博客详细介绍了如何使用YOLOv3训练自己的目标检测模型。内容包括配置cfg文件、创建name和data文件、准备图片和标签、训练过程及参数解释,以及中断后如何继续训练和评估模型性能。通过一步步的指导,帮助读者掌握YOLOv3模型的训练技巧。
摘要由CSDN通过智能技术生成

3.0 前言

本文是YOLOv3系列第3篇,记录YOLOv3如何训练自己的模型。

YOLOv3系列第2篇:YOLOv3的应用

建议参考github上作者的说明,写的十分清楚。

参考的网页:

3.1 配置cfg文件

3.1.1 复制yolov3.cfg(...\darknet-master\cfg目录下)文件并重命名为yolo-obj.cfg(或者其他名字,只要各处对应即可),复制到darknet.exe相同目录下(或者其他目录,输入命令时对应即可)。

3.1.2 修改batch=64,subdivisions=8。

3.1.3 修改classes和filters,共三处。如果检测两类物体,则classes=2,

filters=(classess+5)*3=(2+5)*3=21。

3.1.4 上述修改具体行数参考github即可。

3.2 配置obj.name文件和obj.data文件(命名也可以为其他,只要对应即可)

新建obj.names文件和obj.data文件,放在目录...\darknet-master\build\darknet\x64\data下。

obj.names内容(每行一个类的名字,名字随便写,随时可以改)

obj.data内容(valid是为了训练完成后测试模型效果)

3.3 准备图片和对应的标签文件

每张图片对应一个同名txt文件,txt文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值