5G网络与移动边缘计算在配电自动化管理中的融合应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本篇文章探讨了5G技术与移动边缘计算(MEC)在配电自动化管理大区主站中的结合与应用。5G的高速率、低延迟、大连接数和高可靠性特性,结合MEC的本地数据处理能力,可以显著提升电力系统的效率、可靠性和智能化水平。文章重点介绍了实时监控、故障预测与自愈、能源优化、安全增强、智能化决策和扩展性等方面的实际应用,强调了这一技术组合对于智慧城市建设的重要意义。 融合移动边缘计算的5G网络在配电自动化管理大区主站中的应用.rar

1. 5G网络的关键特性及其优势

1.1 5G技术概述

5G,即第五代移动通信技术,是继4G之后的新一代无线通信技术。其关键特性包括更高的数据传输速率、更低的延迟和更广的连接范围,这使得5G不仅能够支撑现有的移动互联网应用,还能够推动新兴技术如物联网(IoT)、自动驾驶车辆和虚拟现实(VR)的发展。

1.2 5G的关键技术

5G网络的核心技术包括大规模多输入多输出(MIMO)、超密集异构网络、毫米波通信等。大规模MIMO通过在基站部署大量天线来提升频谱效率和信号覆盖。超密集异构网络通过小型基站的广泛分布,优化了网络覆盖和容量。毫米波技术使用30-300 GHz频段,允许使用更宽的带宽,从而提供了超高速的数据传输。

1.3 5G网络的优势

5G网络的核心优势在于它能够提供前所未有的网络速度、广泛覆盖及即时响应能力。高数据传输速度支持了大流量的应用,如高清视频流和VR体验。低延迟特性使得实时应用如远程医疗和自动驾驶成为可能。而广连接特性为物联网设备提供了强大支撑,预计将连接超过百亿设备,为智慧城市、智能家居和工业自动化等提供基础。总之,5G技术的应用将极大地推动社会数字化转型,开启全新的智能互联时代。

2. 移动边缘计算(MEC)的工作原理

2.1 MEC的基本概念和架构

2.1.1 MEC的定义和核心组成

移动边缘计算(MEC)是一种新型的网络架构,旨在将计算和数据存储资源移至无线接入网络的边缘。与传统的集中式云计算不同,MEC通过将计算资源靠近用户或数据源,显著降低了数据在网络中的传输距离,从而提高了响应速度和降低了延迟。MEC的部署位置可以是无线网络的基站、交换中心或接入点,为用户提供云服务和应用。

MEC的核心组成主要包括以下几个部分:

  • MEC平台 :提供运行环境,用于部署和执行边缘应用,平台内集成了数据管理、服务发现和虚拟化等技术。
  • 应用程序接口(APIs) :这些APIs允许MEC平台与第三方应用和服务进行交互,同时为开发者提供开发MEC应用所需的工具和接口。
  • 服务编排器 :负责管理MEC平台上的资源和应用的生命周期,包括部署、更新、监控和故障恢复等。
  • 用户面功能(UPF) :处理数据的路由、转发和过滤,使得数据能够根据业务需求高效地进行本地处理或发送至核心网络。
  • 虚拟化环境 :包括容器、虚拟机等技术,用于隔离边缘计算资源,保证不同服务和应用之间的独立性和安全性。
2.1.2 MEC的工作流程分析

MEC的工作流程可以概括为以下几个步骤:

  1. 数据收集 :首先,MEC平台会通过各种传感器或接入点收集相关的数据。
  2. 数据处理 :收集的数据通过MEC平台的用户面功能进行初步处理,如过滤、分类等。
  3. 边缘应用处理 :数据根据预设规则被路由至相应的边缘应用进行进一步的处理,这些边缘应用可能是流数据处理、内容缓存、特定服务逻辑等。
  4. 本地决策 :对于需要快速响应的场景,MEC平台将基于处理后的数据做出本地决策并执行,例如智能交通灯的控制。
  5. 与核心网络交互 :对于需要全局视图或大数据分析的场景,处理结果或数据被发送至云数据中心或核心网络进行进一步分析或存储。

下面是一个MEC系统组件的简化架构图,描述了核心组件之间的关系。

graph LR
    A[数据收集] -->|数据流| B[用户面功能(UPF)]
    B -->|路由| C[边缘应用]
    B -->|转发| D[核心网络]
    C -->|本地处理结果| E[本地决策]
    D -->|全局处理结果| F[数据存储与分析]

2.2 MEC的关键技术与优势

2.2.1 低延迟通信技术

低延迟是MEC架构的核心优势之一,它依赖于边缘计算与无线接入点的紧密集成。MEC通过减少数据传输到云中心的距离,降低网络的响应时间,实现亚秒级的数据处理。

为实现低延迟通信,MEC通常采用以下技术:

  • 短距离无线技术 :比如5G NR(New Radio)技术,它利用毫米波频段提供高带宽和低延迟。
  • 边缘缓存技术 :对常用数据和内容进行缓存,减少对远端数据中心的依赖。
  • 软件定义网络(SDN)和网络功能虚拟化(NFV) :这些技术有助于动态地优化网络资源,快速响应业务需求变化,降低传输延迟。
2.2.2 分布式云计算能力

MEC具备分布式云计算的能力,允许在无线接入网边缘节点上执行计算任务,减轻了传统数据中心的负担。这种分布式计算模式利用了边缘节点的计算资源和存储能力,提升了数据处理效率。

分布式云计算的关键技术包括:

  • 容器化技术 :容器如Docker能快速启动应用,提供了一种轻量级的虚拟化环境。
  • 微服务架构 :将应用拆分为小的、独立的服务,每个服务都运行在自己的进程中。
  • 服务网格 :如Istio等,它负责管理微服务之间的通信,提供安全、监控、路由等功能。
2.2.3 数据缓存与处理机制

数据缓存与处理是MEC实现快速数据访问和减少延迟的重要机制。通过将用户数据或常用内容缓存在边缘节点,可以显著提高数据的响应速度。

关键的数据缓存与处理机制包括:

  • 缓存策略 :包括最近最少使用(LRU)算法、最不经常使用(LFU)算法,确保高频访问的数据被优先缓存。
  • 内容分发网络(CDN) :通过分布在世界各地的边缘节点,CDN能够将用户请求导向离用户最近的节点以提供快速服务。
  • 实时数据流处理 :通过流数据处理技术如Apache Kafka或Apache Flink,MEC平台能够实时分析和处理数据流。
graph LR
    A[数据收集] -->|缓存策略| B[数据缓存]
    B -->|CDN技术| C[快速数据访问]
    C -->|实时处理| D[数据流分析]

通过以上关键技术的整合,MEC实现了分布式计算、本地缓存、快速数据处理等优势,为5G网络下的实时应用提供了坚实的基础。

3. 5G与MEC结合在配电自动化中的实际应用

3.1 5G与MEC在配电自动化中的融合模式

3.1.1 配电自动化系统的挑战与需求

配电自动化系统在现代电网中扮演着至关重要的角色。随着5G技术和移动边缘计算(MEC)的发展,配电自动化系统正面临前所未有的机遇。系统需求可以总结为以下几个方面:

  1. 即时数据处理能力 :配电系统中,从变电站到终端用户的数据量巨大,且需要实时处理以保证电网的稳定运行。
  2. 高可靠性 :电网的任何故障都可能导致大规模的停电,因此高可靠性是配电自动化系统的基本要求。
  3. 灵活性和可扩展性 :随着可再生能源的并网,系统需要能够适应不断变化的电网结构。
  4. 网络安全 :由于电网的敏感性,确保系统的网络安全是至关重要的。

3.1.2 5G+MEC技术解决方案

5G技术以其高带宽、低延迟和大规模设备连接等特性,为配电自动化带来了全新的解决方案。当5G与MEC结合时,可以实现以下优势:

  1. 低延迟通信 :MEC边缘服务器的部署,缩短了数据传输的距离,使得数据处理更加迅速。
  2. 分布式计算能力 :通过在靠近数据源的地方执行计算任务,减轻了中心云的计算压力。
  3. 智能数据缓存 :MEC可以对数据进行预处理和缓存,保证关键数据的快速访问和实时分析。
  4. 灵活的系统架构 :利用5G网络的灵活性和MEC的边缘计算能力,能够快速响应电网需求的变化。

接下来,我们将深入探讨配电自动化管理大区主站的技术架构,了解其功能模块划分及系统集成与数据流的详细分析。

3.2 配电自动化管理大区主站的技术架构

3.2.1 主站的功能模块划分

配电自动化管理大区主站是整个配电自动化系统的核心,其功能模块可以划分为以下几个主要部分:

  1. 数据采集模块 :负责收集来自各个子站和终端设备的数据。
  2. 控制与优化模块 :根据数据分析结果,下发控制指令,实现电网优化运行。
  3. 状态监测模块 :实时监测电网的运行状态,保障电网的安全与稳定。
  4. 历史数据管理模块 :存储历史数据,为数据分析、决策支持提供数据支持。
  5. 安全防护模块 :提供网络、数据和应用层面的安全保护措施。

3.2.2 系统集成与数据流分析

在配电自动化管理大区主站的技术架构中,系统集成和数据流分析是确保系统高效运行的关键。以下是一个简化的数据流和系统集成示例:

  • 数据流入 :首先,数据采集模块会接收来自各个来源(如传感器、变电站等)的数据。
  • 数据处理 :收集到的数据会首先经过状态监测模块进行初步的实时监控。
  • 数据分析与决策 :控制与优化模块根据分析结果进行决策,并通过安全防护模块确保数据的加密传输。
  • 数据存储与应用 :历史数据管理模块对数据进行存储和备份,同时为上层应用提供数据分析的支持。

数据流的高效处理和分析,依赖于一个良好的系统集成方案。例如,在集成过程中,系统需要利用5G网络保证数据传输的实时性,同时MEC能够对数据进行快速预处理。下面是一个简化的系统集成代码块示例,展示如何利用5G和MEC技术集成数据流:

import requests
from edge_computing import MEC, DataHandler

def main():
    # 创建MEC边缘计算实例
    edge_computing = MEC()
    # 数据采集
    data = requests.get('***').json()
    # 数据预处理
    preprocessed_data = DataHandler.preprocess(data)
    # 通过MEC边缘服务器进行初步分析
    analysis_result = edge_computing.process_data(preprocessed_data)
    # 根据分析结果进行决策或存储历史数据
    if analysis_result.require_action:
        control_command = DataHandler.generate_control_command(analysis_result)
        requests.post('***', json=control_command)
    else:
        DataHandler.store_data(analysis_result)

if __name__ == "__main__":
    main()

在这个代码示例中,首先通过请求数据API获取数据,然后使用数据处理模块对数据进行预处理,之后利用MEC边缘服务器处理数据并生成分析结果。根据分析结果,系统会决定是否执行某些控制命令,或者将数据存储起来以备后续分析。

配电自动化管理大区主站的技术架构,通过5G和MEC技术,实现了一个高度集成和优化的数据流处理系统。这种架构不仅可以提高数据处理的效率,还能增强电网的稳定性和可靠性。在下一节中,我们将深入探讨实时监控功能的实现,了解其在配电自动化系统中的重要作用。

4. 实时监控功能的实现

4.1 实时数据采集与传输

4.1.1 传感器网络与数据采集策略

在配电自动化系统中,实时监控的首要步骤是通过传感器网络采集必要的数据。这些传感器需要部署在关键节点,如变压器、开关设备及配电站等,来确保能够收集到准确的运行状态信息。传感器的选型和部署位置必须基于配电网络的布局和运行特性进行周密规划。例如,温度传感器可部署于变压器周围来监控其运行温度,而电流传感器则安装在输电线路上以测量流经线路的电流大小。

数据采集策略应包括采样频率的设定、数据同步机制以及异常数据的识别和处理。采样频率应根据系统需求和传感器性能合理设置,过高的采样频率会增加数据传输和处理的压力,过低则可能遗漏关键的运行信息。数据同步机制是为了保证不同传感器间采集的数据能够整合为一个完整的数据集,这对于后续的数据分析至关重要。

4.1.2 高速数据传输的实现技术

采集到的数据需要通过高速可靠的数据传输网络发送至监控中心。为此,需要应用先进的数据传输技术如5G网络。5G网络的特点是具有高带宽、低延迟和大连接数,这些特性对于实现高速数据传输至关重要。

为确保数据传输的稳定性和实时性,可以采用如下技术:

  • 多输入多输出(MIMO)技术 :通过在发射端和接收端使用多个天线,增加数据传输的速率和可靠性。
  • 正交频分复用(OFDM)技术 :这是一种数字调制技术,可以减少无线信道的干扰,并提高数据传输速率。
  • 网络切片技术 :可以为实时监控功能划分专用的网络资源,保证传输通道的稳定性和低延迟。

此外,为了优化数据传输,还需要考虑应用前向纠错码(FEC)和自动重传请求(ARQ)等机制来减少数据传输错误和丢失。

4.2 监控数据的实时处理与分析

4.2.1 流数据处理技术

监控数据处理需要采用能够实时处理流数据的技术。流数据处理技术能够在数据到达时即时分析并作出反应,非常适合于实时监控系统。这类技术能够从连续的数据流中实时提取有价值的信息,对于即时发现问题和风险至关重要。

常见的流数据处理技术包括:

  • Apache Kafka :主要用于数据的实时流处理,通过生产者和消费者模式来实现数据的发布和订阅。
  • Apache Storm :一个实时计算框架,支持快速处理大量数据流。
  • Apache Spark Streaming :提供了基于微批处理的流数据处理能力,能与Spark的其他组件无缝整合。

流数据处理不仅包括数据的实时聚合和过滤,还涉及到窗口操作、模式匹配、事件序列分析等多种技术手段,以适应复杂多变的监控场景。

4.2.2 机器学习在实时数据分析中的应用

为了提高监控数据的分析准确性,机器学习算法可以用来识别数据模式并预测潜在的问题。机器学习模型可以被训练来识别数据流中的异常行为或趋势,以便及时发现故障迹象。

机器学习在实时数据分析中的应用流程包括:

  • 数据预处理 :包括归一化、离散化、特征选择等步骤。
  • 模型训练 :通过历史数据训练得到一个预测模型。
  • 在线学习 :模型在实时数据流上进行持续更新和自我优化。
  • 异常检测 :使用训练好的模型识别异常事件。
  • 预测与反馈 :根据模型预测结果进行决策,并将反馈用于模型调整。

实时监控系统可以使用多种机器学习算法,包括但不限于决策树、支持向量机(SVM)、神经网络和深度学习模型。其中,深度学习由于其强大的特征提取能力,在处理复杂数据模式方面表现出色。

结合机器学习的实时监控系统需要考虑数据的实时性和准确性,同时也要有有效的算法来应对数据流的动态变化,以及模型更新的频率和方式。

5. 故障预测与自愈机制

5.1 预测性维护的原理与方法

5.1.1 基于AI的故障诊断技术

在现代化的配电自动化系统中,预测性维护已经逐渐取代传统的预防性维护方式。基于AI的故障诊断技术,其核心在于应用先进的机器学习算法和数据挖掘技术,从海量的运行数据中预测设备可能出现的故障。

预测性维护通过实时监测设备状态,并利用历史数据分析设备的健康状况,从而在故障发生前采取维护措施。这种方法可以大幅降低突发故障的风险,提高系统的整体可靠性。

具体来说,故障诊断通常会采用监督学习方法,例如支持向量机(SVM)和随机森林等,来识别数据模式并区分正常状态与不同类型的故障模式。此外,还可能使用深度学习技术,如卷积神经网络(CNN)或循环神经网络(RNN),对时间序列数据进行模式识别。

为了训练这些模型,需要收集设备在正常运行和出现故障时的数据。这些数据包括温度、振动、电流等传感器信号,以及故障记录等。通过模型训练,可以建立起设备状态与可能故障之间的关联性。

# 示例代码展示使用scikit-learn库进行故障诊断的简单流程
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

# 假设已有数据集data和标签labels
data, labels = load_dataset()  # 这里load_dataset()是一个假设的函数,实际中需要加载真实的数据集

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)

# 创建随机森林分类器模型
rfc = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
rfc.fit(X_train, y_train)

# 对测试集进行预测
predictions = rfc.predict(X_test)

# 输出分类报告
print(classification_report(y_test, predictions))

在上述代码中, load_dataset() 代表一个加载数据集的函数,该函数返回训练和测试所需的特征数据 data 和标签 labels RandomForestClassifier 是一个随机森林分类器,其参数 n_estimators 指定树的数量, random_state 用于随机数生成器的种子。通过 fit 方法进行模型训练,并利用 predict 方法对测试数据进行预测,最后通过 classification_report 输出分类性能报告。

5.1.2 预测性维护模型构建

构建预测性维护模型需要经过几个关键步骤:数据预处理、特征提取、模型训练与验证、模型部署。

数据预处理是模型构建的第一步,包括处理缺失数据、异常值、归一化和数据转换等。这些步骤都是为了保证数据质量和模型的准确性。

特征提取是从原始数据中提取有用信息的过程。在故障诊断中,这可能涉及傅里叶变换、小波变换等信号处理技术,以便从时间序列数据中提取频率特征。

模型训练与验证通常包括对多个候选模型的训练和评估。例如,可以使用交叉验证来评估不同模型在未知数据上的表现,选择表现最佳的模型。

模型部署指的是将训练好的模型应用到实际的生产环境中。在配电自动化系统中,这意味着要将模型集成到监控系统中,并确保其能够实时接收数据、做出诊断,并提供相应的预警。

graph LR
    A[数据预处理] --> B[特征提取]
    B --> C[模型训练与验证]
    C --> D[模型选择]
    D --> E[模型部署]

上图是一个简化的预测性维护模型构建流程,从数据预处理开始,逐步经过特征提取和模型训练验证,最后选择合适的模型进行部署。在实际操作中,这些步骤可能需要反复迭代,以获得最佳的模型性能。

5.2 自愈机制的实现与优化

5.2.1 自愈控制策略

自愈机制是指在检测到故障后,系统能够自动执行一系列操作以恢复到正常运行状态的能力。在配电自动化系统中,自愈控制策略的实现是确保系统稳定运行的关键。

自愈控制策略的构建需要考虑故障发生时系统的行为,包括故障检测、诊断、隔离和恢复。故障检测是自愈机制的起点,可以由预测性维护模型来提供预警。一旦检测到潜在的故障,系统将进行快速诊断并确定故障源。

故障隔离的目的是最小化故障对整个系统的影响。这通常涉及到将故障部件从网络中移除,或是进行资源重分配。恢复策略则要确保在故障后系统能够快速返回到正常工作状态,这可能包括启动备用设备、调整系统配置或执行某些操作以补偿故障部件的功能。

自愈策略的实现需要紧密结合配电自动化的实际应用场景。下面是一个简化的自愈控制策略的示例流程:

graph LR
    A[故障检测] --> B[故障诊断]
    B --> C[故障隔离]
    C --> D[系统恢复]

5.2.2 系统自愈性能评估

评估系统的自愈性能是确保自愈机制有效性的关键环节。评估过程通常会考虑以下几个指标:自愈响应时间、自愈成功率和自愈后系统的稳定性。

自愈响应时间是指从检测到故障到系统开始自愈动作的时间间隔。这个时间越短,意味着系统自愈的速度越快,对电网稳定的影响也越小。

自愈成功率是指系统在检测到故障后能够成功恢复到正常工作状态的比率。成功率越高,表明自愈机制的有效性越高。

自愈后的系统稳定性是指系统在自愈后维持正常运行的时间。一个高稳定性的系统能够在自愈后减少或避免进一步的故障发生。

评估这些指标通常需要通过模拟故障测试,或者在实际运行的系统中记录相关的性能数据。通过分析这些数据,可以对自愈机制进行持续优化,提高系统的可靠性。

以上就是故障预测与自愈机制的相关讨论,接下来将探讨能源优化策略的实现方式。

6. 能源优化策略

随着能源消耗的增加和环境保护意识的提高,能源优化策略在配电自动化系统中显得尤为重要。本章节将深入探讨如何通过5G和MEC的技术优势,实现能源消费分析、模型建立以及优化措施的实施。

6.1 能源消费分析与模型建立

6.1.1 能源消耗数据的采集与分析

为了实现有效的能源优化,首先需要对能源消耗进行精确的测量和分析。现代配电自动化系统通常会集成大量的传感器来监测电力网络中的各个设备和节点。利用5G网络提供的高速率和低延迟特性,可以实时收集并传输大量的能源消耗数据到MEC服务器。

在MEC平台上,采用数据融合和分析技术,可以更准确地了解能源消费的模式和趋势。通过历史数据和实时数据的对比分析,能源管理团队可以预测未来的能源需求,并作出相应的策略调整。

6.1.2 能源优化模型的构建

建立一个能源优化模型是实现能源高效利用的关键步骤。该模型通常包括预测模块、优化算法和决策支持系统。5G和MEC技术能够支持复杂的计算任务在边缘端进行,这意味着数据处理和模型计算可以在靠近数据源的地方完成,从而减少网络传输和延迟。

在构建能源优化模型时,需要结合多种因素,如天气条件、设备运行效率、用户负荷等。通过机器学习和人工智能算法,如神经网络、遗传算法等,能源优化模型可以自我调整和学习,以适应不断变化的条件并提供最优能源管理策略。

6.2 能源优化措施的实施

6.2.1 智能调度与控制策略

能源优化措施的实施依赖于智能调度和控制策略。5G与MEC相结合可以实现对能源系统的实时动态调度。例如,根据预测模型提供的信息,系统可以调整发电机组的输出,以满足预测的电力需求。

此外,智能控制策略可以实现对电网中负载的智能管理,例如在电力需求较低的时段使用储能设备储存能量,在需求高峰时段释放储存的能量。这些策略的实施依赖于精确的能源消费数据和高效的数据处理能力。

6.2.2 能源管理系统的效果评估

实施能源优化策略后,需要对能源管理系统的效能进行评估,以确保优化措施达到预期效果。评估可以通过对比优化前后的能源消耗数据和成本来完成。

在MEC平台上,可以部署仪表板应用程序,实时展示能源消耗状况和优化效果。通过5G网络,这些数据可以快速传输给决策者,帮助他们更好地理解优化措施的影响,并进行必要的调整。

在实施和评估能源优化策略时,以下的代码块展示了如何使用Python计算并比较优化前后的能源消耗情况。这个例子使用了虚构的数据,仅用于演示目的。

import pandas as pd

# 假设已有优化前后的能源消耗数据集
pre_optimization_data = pd.read_csv('energy_pre_optimization.csv')
post_optimization_data = pd.read_csv('energy_post_optimization.csv')

# 计算能源消耗的统计数据
pre_optimization_stats = pre_optimization_data.describe()
post_optimization_stats = post_optimization_data.describe()

# 输出统计数据以便对比
print("优化前统计数据:")
print(pre_optimization_stats)
print("\n优化后统计数据:")
print(post_optimization_stats)

# 假设有一个函数来评估优化效果
def evaluate_optimization(pre_stats, post_stats):
    # 这里可以是任何评估优化效果的算法,例如成本节约、能效提升等
    efficiency_improvement = (pre_stats['mean'] - post_stats['mean']) / pre_stats['mean']
    return efficiency_improvement

# 调用评估函数并输出结果
efficiency = evaluate_optimization(pre_optimization_stats, post_optimization_stats)
print(f"能源优化效果评估: {efficiency:.2%}")

通过这些步骤,我们可以看到5G和MEC技术在能源优化策略中的应用不仅能够提高配电自动化系统的效率,还能够降低能耗,实现可持续发展目标。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本篇文章探讨了5G技术与移动边缘计算(MEC)在配电自动化管理大区主站中的结合与应用。5G的高速率、低延迟、大连接数和高可靠性特性,结合MEC的本地数据处理能力,可以显著提升电力系统的效率、可靠性和智能化水平。文章重点介绍了实时监控、故障预测与自愈、能源优化、安全增强、智能化决策和扩展性等方面的实际应用,强调了这一技术组合对于智慧城市建设的重要意义。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

  • 11
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值