图像风格迁移cvpr2020_浅谈风格迁移(二)任意风格迁移

本文深入探讨了AdaIN算法如何实现任意风格迁移,以及后续的SANet和MetaStyle等方法如何进一步提升风格迁移效果。通过风格注意力网络和元学习优化,这些技术实现了更快、更充分的风格迁移。

-- 本文来自于VIP Lab的黄宇杰同学撰稿

(接上篇)AdaIN

在17年ICCV中,AdaIN [10]横空出世,完成了任意风格迁移。AdaIN的思路不同于之前的想法,它致力于从一张图片由VGG16输出的特征图中分别提取内容和风格信息,并且将这两个信息分离开来(这个想法和StyleBank [11]有些类似)。作者根据前人的工作和自己的实验研究发现,图片由卷积神经网络提取的特征图的每个通道中数据的均值和标准差可以代表这张图片的风格,而且,特征图利用对应通道的均值和标准差进行normalization后可以将风格特征去除,只保留内容特征,操作如下:

x是特征图一个通道中的值, 和 分别是这个通道中所有值的均值和标准差。因此作者采用将内容图经过VGG16提取的特征图用对应通道的均值和标准差进行normalization,然后根据风格图经过VGG16提取的特征图对应通道的均值和标准差,对内容图的特征图进行反normalization,操作如下(作者称其为adaptive instance normalization):

其中x是内容图的特征图的某一通道中的值,y是风格图的特征图的相同通道中的值。损失函数中内容损失作者采用的是[4]中的,在风格损失中,作者用特征图对应通道的均值和方差来代替Gram矩阵来表示风格,风格损失如下:

其中

表示VGG16输出的特征图,g表示生成图,s表示风格图,

分别是按通道计算均值和方差。这里为了局部全局风格的获得,同样用VGG16多个卷积层的输出组合构成完整的风格损失。AdaIN的整体结构如下:图 9

Ls和Lc分别是风格和内容损失,左边的VGG19(到Relu4_1)被用作Encoder来提取特征图,Decoder是将特征图变回到正常图片空间,其结构和VGG19(到Relu4_1)对称。AdaIN就是公式(9)表示的操作。右边的VGG16是用来计算损失函数用的,Decoder的输出就是完成迁移后的图片。其视觉效果如下:图 10

AdaIN直接输入两张图片,无需经过任何训练就可以获得风格迁移后的图片。对于512x512像素的图片,在Pascal Titan X GPU上其只需0.098s就可以完成风

### 关于风格迁移CVPR会议上的最新研究 为了查找有关风格迁移(Style Transfer)领域最新的CVPR会议论文,可以遵循以下策略来获取相关信息: 研究人员通常会关注CVPR官方网站以及其每年发布的会议录。由于作者被严格限制不得提前公开提交至CVPR的内容[^1],因此只有当这些论文正式发布后才能查阅到具体的研究成果。 对于最近几年内的进展,在不同的学习方法协同作用下[^2],许多新模型和技术得以开发出来。例如,有研究表明通过结合CLIP模型进行图文匹配并利用多模态Transformer整合多种数据形式的技术路线能够有效提升跨媒体理解能力[^3]。这种趋势可能同样适用于改进图像风格转换的效果。 以下是Python脚本示例用于自动化搜索特定主题下的学术文章链接: ```python import requests from bs4 import BeautifulSoup def search_cvpr_papers(keyword, year="latest"): base_url = f"https://openaccess.thecvf.com/CVPR{year}?term={keyword}" response = requests.get(base_url) soup = BeautifulSoup(response.text, 'html.parser') titles = [] for item in soup.find_all('dt'): title_link = item.a['href'] paper_title = item.a.text.strip() titles.append((paper_title, title_link)) return titles[:5] papers_found = search_cvpr_papers("style transfer", "2023") for idx, (title, link) in enumerate(papers_found): print(f"{idx+1}. {title}\nLink: https://openaccess.thecvf.com/{link}") ``` 此代码片段可以帮助快速定位目标关键词如“style transfer”的相关出版物列表及其下载地址。 #### 注意事项 尽管上述信息提供了指导方向,但实际操作过程中仍需访问官方资源以获得最权威的第一手资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值